Ремонт и отделка

Методы исследования центральной нервной системы. Методы исследования ЦНС

Методы исследования центральной нервной системы. Методы исследования ЦНС

Методы исследования центральной нервной системы

Наибольшее распространение получили методы регистрации биоэлектрической активности отдельных нейронов, суммарной активности нейронного пула или головного мозга в целом (электроэнцефалография), компьютерная томография (позитронно-эмиссионная томография, магнитно-резонансная томография) и др.

Электроэнцефалография - это регистрация с поверхности кожи головы или с поверхности коры (последнее - в эксперименте) суммарного электрического поля нейронов мозга при их возбуждении (рис. 82).

Рис. 82. Ритмы электроэнцефалограммы: А – основные ритмы: 1 – α-ритм, 2 – β-ритм, 3 - θ-ритм, 4 – σ-ритм; Б – реакция десинхронизации ЭЭГ затылочной области коры большого мозга при открывании глаз () и восстановление α-ритма при закрывании глаз (↓)

Происхождение волн ЭЭГ изучено недостаточно. Полагают, что ЭЭГ отражает ЛП множества нейронов - ВПСП, ТПСП, следовые - гиперполяризацию и деполяризацию, способные к алгебраической, пространственной и временной суммации.

Эта точка зрения является общепризнанной, при этом участие ПД в формировании ЭЭГ отрицается. Так, например, W. Willes (2004) пишет: «Что касается потенциалов действия, то возникающие их ионные токи слишком слабы, быстры и несинхронизированны, чтобы их можно было зарегистрировать в виде ЭЭГ». Однако это утверждение не подкреплено экспериментальными фактами. Для его доказательства необходимо предотвратить возникновение ПД всех нейронов ЦНС и регистрировать ЭЭГ в условиях возникновения только ВПСП и ТПСП. Но это невозможно. Кроме того, в натуральных условиях ВПСП обычно являются начальной частью ПД, поэтому утверждать, что ПД не участвуют в формировании ЭЭГ, оснований нет.

Таким образом, ЭЭГ - это регистрация суммарного электрического поля ПД, ВПСП, ТПСП, следовых гиперполяризации и деполяризации нейронов .

На ЭЭГ регистрируется четыре основных физиологических ритма: α-, β-, θ- и δ-ритмы, частота и амплитуда которых отражают степень активности ЦНС.

При исследовании ЭЭГ описывают частоту и амплитуду ритма (рис. 83).

Рис. 83. Частота и амплитуда ритма электроэнцефалограммы. Т 1 , Т 2 , Т 3 – период (время) колебания; количество колебаний в 1 сек – частота ритма; А 1 , А 2 – амплитуда колебания (Кирой, 2003).

Метод вызванных потенциалов (ВП) заключается в регистрации изменений электрической активности мозга (электрического поля) (рис. 84), возникающих в ответ на раздражение сенсорных рецепторов, (обычный вариант).

Рис. 84. Вызванные потенциалы у человека на вспышку света: П – позитивные, Н – негативные компоненты ВП; цифровые индексы означают порядок следования позитивных и негативных компонентов в составе ВП. Начало записи совпадает с моментом включения вспышки света (стрелка)

Позитронно-эмиссионная томография - метод функционального изотопного картирования мозга, основанный на введении в кровоток изотопов (13 М, 18 Р, 15 О) в соединении с дезоксиглюкозой. Чем активнее участок мозга, тем он больше поглощает меченой глюкозы. Радиоактивное излучение послед­ней регистрируется специальными детекторами. Информация от детекторов поступает на компьютер, который создает «срезы» мозга на регистрируемом уровне, отражающие неравномерность распределения изотопа в связи с метаболической активностью мозговых структур, что позволяет судить о возможных поражениях ЦНС.

Магнитно-резонансная томография позволяет выявить активно работающие участки мозга. Методика основана на том, что после диссоциации оксигемоглобина гемоглобин приобретает парамагнитные свойства. Чем выше метаболическая активность мозга, тем больше объемный и линейный кровоток в данном участке мозга и тем меньше отношение парамагнитного дезоксигемоглобина к оксигемоглобину. В мозге существует много очагов активации, что отражается в неоднородности магнитного поля.

Стереотаксический метод . Метод позволяет вводить макро- и микроэлектроды, термопару в различные структуры головного мозга. Координаты структур мозга приведены в стереотаксических атласах. Посредством введенных электродов можно регистрировать биоэлектрическую активность данной структуры, раздражать или разрушать ее; через микроканюли можно вводить химические вещества в нервные центры или желудочки мозга; с помощью микроэлектродов (их диаметр менее 1 мкм), подведенных вплотную к клетке, можно регистрировать импульсную активность отдельных нейронов и судить об участии последних в рефлекторных, регуляторных и поведенческих реакциях, а также о возможных патологических процессах и применении соответствующих лечебных воздействий фармакологическими препаратами.

Данные о функциях головного мозга можно получить при проведении операций на мозге. В частности, при электрической стимуляции коры во время нейрохирургических операций.

Вопросы для самоконтроля

1. Какие три отдела мозжечка и их составные элементы выделяют в структурно-функциональном отношении? От каких рецепторов поступают импульсы в мозжечок?

2. С какими отделами ЦНС мозжечок связан с помощью нижних, средних и верхних ножек?

3. С помощью каких ядер и структур ствола мозга мозжечок реализует свое регулирующее влияние на тонус скелетной мускулатуры и двигательную активность организма? Возбуждающим или тормозным оно является?

4. Какие структуры мозжечка участвуют в регуляции мышечного тонуса, позы и равновесия?

5. Какая структура мозжечка участвует в программировании целенаправленных движений?

6. Какое влияние оказывает мозжечок на гомеостазис, как изменяется гомеостазис при повреждении мозжечка?

7. Перечислите отделы ЦНС и структурные элементы, составляющие передний мозг.

8. Назовите образования промежуточного мозга. Какой тонус скелетных мышц наблюдается у диэнцефального животного (удалены полушария большого мозга), в чем он выражается?

9. На какие группы и подгруппы делят ядра таламуса и как они связаны с корой больших полушарий?

10. Как называют нейроны, посылающие информацию к специфическим (проекционным) ядрам таламуса? Как называют пути, которые образуют их аксоны?

11. Какова роль таламуса?

12. Какие функции выполняют неспецифические ядра таламуса?

13. Назовите функциональное значение ассоциативных зон таламуса.

14. Какие ядра среднего и промежуточного мозга образуют подкорковые зрительные и слуховые центры?

15. В осуществлении каких реакций, кроме регуляции функций внутренних органов, принимает участие гипоталамус?



16. Какой отдел головного мозга называют высшим вегетативным центром? Что называют тепловым уколом Клода Бернара?

17. Какие группы химических веществ (нейросекретов) поступают от гипоталамуса к передней доле гипофиза и каково их значение? Какие гормоны поступают в заднюю долю гипофиза?

18. Какие рецепторы, воспринимающие отклонения от нормы параметров внутренней среды организма, обнаружены в гипоталамусе?

19. Центры регуляции каких биологических потребностей обнаружены в гипоталамусе

20. Какие структуры головного мозга составляют стриопаллидарную систему? Какие реакции возникают в ответ на стимуляцию ее структур?

21. Перечислите основные функции, в выполнении которых важную роль играет полосатое тело.

22. Каковы функциональные взаимоотношения полосатого тела и бледного шара? Какие двигательные расстройства возникают при повреждении полосатого тела?

23. Какие двигательные расстройства возникают при повреждении бледного шара?

24. Назовите структурные образования, составляющие лимбическую систему.

25. Что характерно для распространения возбуждения между отдельными ядрами лимбической системы, а также между лимбической системой и ретикулярной формацией? Чем это обеспечивается?

26. От каких рецепторов и отделов ЦНС поступают афферентные импульсы к различным образованиям лимбической системы, куда посылает импульсы лимбическая система?

27. Какие влияния оказывает лимбическая система на сердечно-сосудистую, дыхательную и пищеварительную системы? Посредством каких структур осуществляются эти влияния?

28. В процессах кратковременной или долговременной памяти играет важную роль гиппокамп? Какой экспериментальный факт об этом свидетельствует?

29. Приведите экспериментальные доказательства, свидетельствующие о важной роли лимбической системы в видоспецифическом поведении животного и его эмоциональных реакциях.

30. Перечислите основные функции лимбической системы.

31. Функции круга Пейпеца и круга через миндалину.

32. Кора больших полушарий: древняя, старая и новая кора. Локализация и функции.

33.Серое и белое вещество КПБ. Функции?

34.Перечислите слои новой коры и их функции.

35.Поля Бродмана.

36.Колончатая организация КБП по Маунткаслу.

37.Функциональное деление коры: первичные, вторичные и третичные зоны.

38.Сенсорные, моторные и ассоциативные зоны КБП.

39.Что означает проекции общей чувствительности в коре (Чувствительный гомункулус по Пенфилду). Где в коре находятся эти проекции?

40.Что означает проекции двигательной системы в коре (Двигательный гомункулус по Пенфилду). Где в коре находятся эти проекции?

50. Назовите соматосенсорные зоны коры больших полушарий, укажите места их расположения и назначение.

51. Назовите основные моторные зоны коры больших полушарий и места их расположения.

52.Что собой представляют зоны Вернике и Брока? Где они располагаются? Какие последствия наблюдаются при их нарушении?

53. Что понимают под пирамидной системой? Какова ее функция?

54. Что понимают под экстрапирамидной системой?

55. Каковы функции экстрапирамидной системы?

56. Какова последовательность взаимодействия сенсорной, моторной и ассоциативной зон коры при решении задач на узнавание предмета и произнесения его названия?

57.Что такое межполушарная ассиметрия?

58.Какие функции выполняет мозолистое тело и почему его перерезают при эпилепсии?

59.Приведите примеры нарушения межполушарной ассиметрии?

60.Сравните функции левого и правого полушарий.

61.Перечислите функции различных долей коры.

62.Где в коре осуществляется праксис и гнозис?

63.Нейроны какой модальности находятся в первичных, вторичных и ассоциативных зонах коры?

64.Какие зоны занимают наибольшую площадь в коре? Почему?

66.В каких зонах коры формируются зрительны ощущения?

67.В каких зонах коры формируются слуховые ощущения?

68.В каких зонах коры формируются тактильные и болевые ощущения?

69.Какие функции выпадут у человека при нарушении лобных долей?

70.Какие функции выпадут у человека при нарушении затылочных долей?

71.Какие функции выпадут у человека при нарушении височных долей?

72.Какие функции выпадут у человека при нарушении теменных долей?

73. Функции ассоциативных областей КБП.

74.Методы изучения работы головного мозга: ЭЭГ, МРТ, ПЭТ, метод вызванных потенциалов, стереотаксический и другие.

75.Перечислите основные функции КБП.

76. Что понимают под пластичностью нервной системы? Объясните на примере головного мозга.

77. Какие функции голвного мозга выпадут, если удалить кору больших полушарий у разных животных?

2.3.15 . Общая характеристика вегетативной нервной системы

Вегетативная нервная система - это часть нервной системы, регулирующая работу внутренних органов, просвет сосудов, обмен веществ и энергии, гомеостазис.

Отделы ВНС. В настоящее время общепризнанными являются два отдела ВНС: симпатический и парасимпатический. На рис. 85 представлены отделы ВНС и иннервация ее отделами (симпатическим и парасимпатическим) различных органов.

Рис. 85. Анатомия вегетативной нервной системы. Показаны органы и их симпатическая и парасимпатическая иннервация. T 1 -L 2 – нервные центры симпатического отдела ВНС; S 2 -S 4 - нервные центры парасимпатического отдела ВНС в крестцовом отделе спинного мозга, III–глазодвигательный нерв, VII–лицевой нерв, IX–языкоглоточный нерв, X–блуждающий нерв – нервные центры парасимпатического отдела ВНС в стволе мозга

В таблице 10 приводятся эффекты симпатической и парасимпатической отделов ВНС на эффекторные органы с указанием типа рецептора на клетках эффекторных органов (Чеснокова, 2007) (табл. 10).

Таблица 10. Влияние симпатической и парасимпатической отделов вегетативной нервной системы на некоторые эффекторные органы

Орган Симпатический отдел ВНС Рецептор Парасимпатический отдел ВНС Рецептор
Глаз (радужная оболочка)
Радиальная мышца Сокращение α 1
Сфинктер Сокращение -
Сердце
Синусный узел Учащение β 1 Замедление М 2
Миокард Повышение β 1 Понижение М 2
Сосуды (гладкие мышцы)
В коже, во внутренних органах Сокращение α 1
В скелетных мышцах Расслабление β 2 М 2
Бронхиальные мышцы (дыхание) Расслабление β 2 Сокращение М 3
Пищеварительный тракт
Гладкие мышцы Расслабление β 2 Сокращение М 2
Сфинктеры Сокращение α 1 Расслабление М 3
Секреция Снижение α 1 Повышение М 3
Кожа
Мышцы волосков Сокращение α 1 М 2
Потовые железы Повышенная секреция М 2

В последние годы получены убедительные факты, доказывающие наличие серотонинергических нервных волокон, идущих в составе симпатических стволов и усиливающих сокращения гладких мышц ЖКТ.

Дуга вегетативного рефлекса имеет те же звенья, что и дуга соматического рефлекса (рис. 83).

Рис. 83. Рефлекторная дуга вегетативного рефлекса: 1 – рецептор; 2 – афферентное звено; 3 – центральное звено; 4 – эфферентное звено; 5 - эффектор

Но имеются особенности ее организации:

1. Главное отличие заключается в том, что рефлекторная дуга ВНС может замыкаться вне ЦНС - интра- или экстраорганно.

2. Афферентное звено дуги вегетативного рефлекса может быть образовано как собственными - вегетативными, так и соматическими афферентными волокнами.

3. В дуге вегетативного рефлекса слабее выражена сегментированность , что повышает надежность вегетативной иннервации.

Классификация вегетативных рефлексов (по структурно-функциональной организации):

1. Выделяют центральные (различного уровня) и периферические рефлексы , которые подразделяют на интра- и экстраорганные.

2. Висцеро-висцеральные рефлексы - изменение деятельности желудка при наполнении тонкой кишки, торможение деятельности сердца при раздражении Р-рецепторов желудка (рефлекс Гольца) и др. Рецептивные поля этих рефлексов локализуются в разных органах.

3. Висцеросоматические рефлексы - изменение соматической деятельности при возбуждении сенсорных рецепторов ВНС, например, сокращение мышц, движение конечностей при сильном раздражении рецепторов ЖКТ.

4. Соматовисцеральные рефлексы . Примером может служить рефлекс Даньини-Ашнера - уменьшение частоты сердцебиений при надавливании на глазные яблоки, уменьшение мочеобразования при болевом раздражении кожи.

5. Интероцептивные, проприоцептивные и экстероцептивные рефлексы - по рецепторам рефлексогенных зон.

Функциональные отличия ВНС от соматической нервной системы. Они связаны со структурными особенностями ВНС и степенью выраженности влияния на нее коры большого мозга. Регуляция функций внутренних органов с помощью ВНС может осуществляться при полном нарушении ее связи с ЦНС, однако менее совершенно. Эффекторный нейрон ВНС находится за пределами ЦНС : либо в экстра-, либо в интраорганных вегетативных ганглиях, образующих периферические экстра- и интраорганные рефлекторные дуги. При нарушении же связи мышц с ЦНС соматические рефлексы устраняются, поскольку все мотонейроны находятся в ЦНС.

Влияние ВНС на органы и ткани организма не контролируется непосредственно сознанием (человек не может произвольно управлять частотой и силой сердечных сокращений, сокращений желудка и т.д.).

Генерализованный (диффузный) характер влияния в симпатическом отделе ВНС объясняется двумя основными факторами.

Во-первых , большинство адренергических нейронов имеет длинные постганглионарные тонкие аксоны, многократно ветвящиеся в органах и образующие так называемые адренергические сплетения. Общая длина конечных ветвей адренергического нейрона может достигать 10-30 см. На этих ветвях по их ходу имеются многочисленные (250-300 на 1 мм) расширения, в которых синтезируется, запасается и обратно ими захватывается норадреналин. При возбуждении адренергического нейрона норадреналин высвобождается из большого числа этих расширений во внеклеточное пространство, при этом он действует не на отдельные клетки, а на множество клеток (например, гладкомышечных), поскольку расстояние до постсинаптических рецепторов достигает 1-2 тыс. нм. Одно нервное волокно может иннервировать до 10 тыс. клеток рабочего органа. У соматической нервной системы сегментарный характер иннервации обеспечивает более точную посылку импульсов к определенной мышце, к группе мышечных волокон. Один мотонейрон может иннервировать всего несколько мышечных волокон (например, в мышцах глаза - 3-6, пальцев - 10-25).

Во-вторых , постганглионарных волокон в 50-100 раз больше, чем преганглионарных (в ганглиях нейронов больше, чем преганглионарных волокон). В парасимпатических узлах каждое преганглионарное волокно контактирует только с 1-2 ганглионарными клетками. Небольшие лабильность нейронов вегетативных ганглиев (10-15 имп./с) и скорость проведения возбуждения в вегетативных нервах: 3-14 м/с в преганглионарных волокнах и 0,5-3 м/с в постганглионарных; в соматических нервных волокнах - до 120 м/с.

В органах с двойной иннервацией эффекторные клетки получают симпатическую и парасимпатическую иннервацию (рис. 81).

Каждая мышечная клетка ЖКТ, по-видимому, имеет тройную экстраорганную иннервацию - симпатическую (адренергическую), парасимпатическую (холинергическую) и серотонинергическую, а также иннервацию от нейронов интраорганной нервной системы. Однако некоторые из них, например мочевой пузырь, получают в основном парасимпатическую иннервацию, а ряд органов (потовые железы, мышцы, поднимающие волосы, селезенка, надпочечники) - только симпатическую.

Преганглионарные волокна симпатической и парасимпатической нервной системы являются холинергическими (рис. 86) и образуют синапсы с ганглионарными нейронами с помощью ионотропных N-холинорецепторов (медиатор - ацетилхолин).

Рис. 86. Нейроны и рецепторы симпатической и парасимпатической нервной системы: А – адренергические нейроны, Х – холинергческие нейроны; сплошная линия – преганглионарные волокна; пунктирная линия - постганглионарные

Рецепторы получили свое название (Д. Ленгли) из-за чувствительности к никотину: малые его дозы возбуждают нейроны ганглия, большие - блокируют. Симпатические ганглии расположены экстраорганно , Парасимпатические - как правило, интраорганно . В вегетативных ганглиях, кроме ацетилхолина, имеются нейропептиды : метэнкефалин, нейротензин, ХЦК, вещество Р. Они выполняют моделирующую роль . N-холинорецепторы локализованы также на клетках скелетных мышц, каротидных клубочков и мозгового слоя надпочечников. N-холинорецепторы нервно-мышечных соединений и вегетативных ганглиев блокируются различными фармакологическими препаратами. В ганглиях имеются вставочные адренергические клетки, регулирующие возбудимость ганглионарных клеток.

Медиаторы постганглионарных волокон симпатической и парасимпатической нервной системы разные .

При исследовании функционального состояния ЦНС используются различные методы, в том числе простые, основанные на наблюдении за тем, как реализуются функции ЦНС: сенсорная, двигательная и вегетативная. Применяются методы исследования состояния высшей нервной деятельности (ВНД), в том числе методы, оценивающие епособность чело­века к выработке условного рефлекса, методы оценки высших психических функций - мышления, памяти, внимания.

В экспериметальной

физиологии широко при­меняются хирургические методы: перерезки, под­резки, экстирпации. Од­нако и в клинических ус­ловиях в ряде случаев ис­пользуются эти методы (но с целью лечения, а не для изучения функций). Разрушение структур мозга, перерезка отдель­ных путей обычно выпол­няются с использованием стереотаксической техни­ки; введение электродов в мозг человека или живот­ного в определенные его участки и на определен­ную глубину. Таким спо­собом, например, исполь­зуя методику электроли­за, можно удалить очаг, вызывающий эпилептиче­ские припадки. Пионером в этом направлении был Пенфильд. В России этот метод нашел применение в клинике у академика Н.П. Бехтеревой при ле-ченни ряда форм патоло­гии ЦНС, в том числе при болезни Паркинсона. Ко­нечно, использование этого метода для лечения человека имеет целый ряд ограничений.


Рис. 11. Регистрация вызванных по­тенциалов коры больших полушарий головного мозга кошки (по И.Г. Вла­совой).

1 ~ схема вызванных потенциалов коры
больших полушарий кошки: а - первич­
ный ответ (ПО): 1 -отметка раздражения,

2 - латентный период, 3 - положитель­
ная фаза, 4 - отрицательная фаза;



II - запись: а - ПО (зарегистрированы в первой соматосенсорной зоне коры боль­ших полушарий кошки при раздражении контралатерального седалищного нерва)

Рис. 12. Регистрация возбуждающе­го постсинаптического потенциала (ВПСП) и тормозного постсинаптиче-ского потенциала (ТПСП) нервной клетки.

I-возбуждающий постсинаптический по­тенциал: а - артефакт раздражения; б- ВПСП;

II-тормозной постсинаптический потен­циал: а - артефакт раздражения; б- ТПСП;


Наиболее активно в клинической и экспе­риментальной практике используются мето­ды регистрации электрической активности нейронов мозга. Например, метод микроэле" ктродной техники - его можно даже исполь­зовать на человеке - во время операций на мозге в соответствующие участки мозга вво­дится стеклянная микропипетка, с помощью которой н регистрируется электрическая ак­тивность отдельного нейрона. Это же можно осуществить с нейронами, изолированными из организма.

Методика вызванных потенциалов (ВП) интересна тем, что с ее помощью можно оце­нить все те структуры мозга, которые прини­мают участие в обработке информации, иду­щей от данного рецептора. Если в данный уча­сток мозга (где находятся отводящие элект­роды) поступает информация, то в этой обла­сти регистрируются вызванные потенциалы.

Особую популярность приобрел Метод электроэнцефалографии: регистрация сум­марной электрической активности нейронов мозга (главным образом коры). Осуществля­ется путем регистрации разности потенциа­лов между двумя какими-либо точками, рас­положенными на голове. Существует опреде­ленная классификация различных видов отве­дений, используемых в ЭЭГ. В целом, ЭЭГ представляет собой низкоамплитудные коле­бания электрической активности, частотные и амплитудные характеристики которых зави­сят от состояния ЦНС. Различают ритмы ЭЭГ: альфа-ритм (8-13 Гц, 10-100 мкВ), бета-ритм (14-30 Гц, ампл. менее 20 мкВ), тета-ритм (7-11 Гц, ампл. более 100 мкВ), дель­та-ритм (менее 4 Гц, ампл. 150-200 мкВ). Обычно в условиях спокойной позы у челове­ка регистрируется альфа-ритм. При активном бодрствовании - бета-ритм. Переход от аль­фа- к бетафитму или от тета- к альфа- и бета-ритму называется десинхронизацией. При за­сыпании, когда уменьшается активность коры больших полушарий, имеет место синхрони­зация - переход электрической активности от альфа-ритма к тета- и даже к дельта-ритму. При этом клетки мозга начинают работать синхронно: частота генерации волн уменьша­ется, а их амплитуда возрастает. В целом, ЭЭГ позволяет определить характер состояния мозга (активный, бодрствующий или спящий мозг), стадии естественного сна, в том числе

Позволяет выяснить так называемый парадоксальный сон, она дает возможность судить о глубине наркоза, о наличии патологического очага в мозге (эпилептический очаг, опу­холь) и т. д. Хотя многие возлагали большие надежды на ЭЭГ как метод, позволяющий определить физиологические процессы, лежащие в основе мышления, но до сих пор в этом направлении не получено обнадеживающих данных.

Частная физиология центральной нервной системы — раздел , изучающий функции структур головного и спинного мозга, а также механизмы их осуществления.

К методам исследования функций центральной нервной системы относятся нижеперечисленные.

Электроэнцефалография — метод регистрации биопотенциалов, генерируемых головного мозга, при отведении их от поверхности кожи головы. Величина таких биопотенциалов составляет 1-300 мкВ. Они отводятся с помощью электродов, накладываемых на поверхность кожи головы в стандартных точках, над всеми долями мозга и некоторыми их областями. Биопотенциалы подаются на вход прибора электроэнцефалографа, который их усиливает и регистрирует в виде электроэнцефалограммы (ЭЭГ) — графической кривой непрерывных изменений (волн) биопотенциалов мозга. Частота и амплитуда электроэнцефалографических волн отражают уровень активности нервных центров. С учетом величин амплитуды и частоты волн выделяют четыре основных ритма ЭЭГ (рис. 1).

Альфа-ритм имеет частоту 8-13 Гц и амплитуду 30- 70 мкВ. Это относительно регулярный, синхронизированный ритм, регистрируемый у человека, находящегося в состоянии бодрствования и покоя. Он выявляется приблизительно у 90% людей, находящихся в спокойной обстановке, при максимальном расслаблении мышц, с закрытыми глазами или в темноте. Альфа-ритм наиболее выражен в затылочных и теменных долях мозга.

Бета-ритм характеризуется нерегулярными волнами с частотой 14-35 Гц и амплитудой 15-20 мкВ. Этот ритм регистрируется у бодрствующего человека в лобных и теменных областях , при открытии глаз, действии звука, света, обращении к испытуемому, выполнении им физических действий. Он свидетельствует о переходе нервных процессов к более активному, деятельному состоянию и повышению функциональной активности мозга. Смену альфа-ритма или других электроэнцефалографических ритмов мозга на бета-ритм называют реакцией десинхронизации, или активации.

Рис. 1. Схема основных ритмов биопотенциалов головного мозга (ЭЭГ) человека: а — ритмы, регистрируемые с поверхности кожи головы в покос; 6 — действие света вызывает реакцию десинхронизации (смену α-ритма на β-ритм)

Тета-ритм имеет частоту 4-7 Гц и амплитуду до 150 мкВ. Он проявляется при поздних стадиях засыпания человека и развитии наркоза.

Дельта-ритм характеризуется частотой 0,5-3,5 Гц и большой (до 300 мкВ) амплитудой воли. Он регистрируется над всей поверхностью мозга во время глубокого сна или наркоза.

Основную роль в происхождении ЭЭГ отводят постсинаптическим потенциалам . Считается, что на характер ЭЭГ-ритмов оказывает наибольшее влияние ритмическая активность пейсмекерных нейронов и ретикулярной формации ствола мозга. При этом таламус индуцирует в коре высокочастотные, а ретикулярная формация ствола мозга — низкочастотные ритмы (тета и дельта).

Метод ЭЭГ широко используется для регистрации нейронной активности в состояниях сна и бодрствования; для выявления очагов повышенной активности в мозге, например при эпилепсии; для исследования влияния лекарственных и наркотических веществ и решения других задач.

Метод вызванных потенциалов позволяет регистрировать изменение электрических потенциалов коры и других структур мозга, вызываемых стимуляцией различных рецепторных полей или проводящих путей, связанных с этими структурами мозга. Возникающие в ответ на одномоментное раздражение биопотенциалы коры носят волнообразный характер, длятся до 300 мс. Для выделения вызванных потенциалов из спонтанных электроэнцефалогических волн применяют сложную компьютерную обработку ЭЭГ. Эта методика используется в эксперименте и в клинике для определения функционального состояния рецепторной, проводниковой и центральной частей сенсорных систем.

Микроэлектродный метод позволяет с помощью тончайших электродов, вводимых в клетку или подводимых к нейронам, расположенным в определенной области мозга, регистрировать клеточную или внеклеточную электрическую активность , а также оказывать на них воздействие электрическими токами.

Стереотаксический метод позволяет вводить в заданные структуры мозга зонды, электроды с лечебной и диагностической целью. Их введение осуществляется с учетом трехмерных пространственных координат расположения интересующей структуры мозга, которые описаны в стереотаксических атласах. В атласах указывается под каким углом и на какую глубину относительно характерных анатомических точек черепа должны вводиться электрод или зонд для достижения интересующей структуры мозга. При этом голова больного фиксируется в специальном держателе.

Метод раздражения. Раздражение различных структур мозга чаще всего проводится с помощью слабого электрического тока. Такое раздражение легко дозируется, не вызывает повреждений нервных клеток и может наноситься многократно. В качестве раздражителей используются также различные биологически активные вещества.

Методы перерезок, экстирпации (удаления) и функциональной блокады нервных структур. Удаление структур мозга и их перерезки широко использовались в эксперименте в начальный период накопления знаний о мозге. В настоящее время сведения о физиологической роли различных структур ЦНС пополняются клиническими наблюдениями за изменением состояния функций мозга или других органов у больных, подвергшихся удалению или разрушению отдельных структур нервной системы (при опухолях, кровоизлияниях, травмах).

При функциональной блокаде производят временное выключение функций нервных структур путем введения веществ тормозного действия, воздействий специальных электрических токов, охлаждения.

Реоэнцефалография. Представляет собой методику исследования пульсовых изменений кровенаполнения мозговых сосудов. Она основана на измерении сопротивления нервной ткани электрическому току, которое зависит от степени их кровенаполнения.

Эхоэнцефалография. Позволяет определять локализацию и размеры уплотнений и полостей в мозге и костях черепной коробки. Эта методика основывается на регистрации ультразвуковых волн, отраженных от тканей головы.

Методы компьютерной томографии (визуализации). Основаны на регистрации сигналов от проникших в ткани мозга короткоживущих изотопов с помощью магниторезонансной, позитронно-эмиссионной томографии и регистрации поглощения проходящих через ткани рентгеновских лучей. Обеспечивают получение четкого послойного и трехмерного изображения структур мозга.

Методы исследования условных рефлексов и поведенческих реакций. Позволяют изучать интегративные функции высших отделов мозга. Эти методы подробнее рассмотрены в разделе интегративные функции мозга.

Современные методы исследования

Электроэнцефалография (ЭЭГ) — регистрация электромагнитных волн, возникающих в коре головного мозга при быстром изменении потенциалов корковых полей.

Магнитоэнцефалография (МЭГ) — регистрация магнитных полей в коре головного мозга; преимущество МЭГ над ЭЭГ связано с тем, что МЭГ не испытывает искажений от тканей, покрывающих мозг, не требует индифферентного электрода и отражает только источники активности, параллельные черепу.

Позитивно-эмиссионная томография (ПЭТ) — метод, позволяющий с помощью соответствующих изотопов, введенных в кровь, оценить структуры мозга, а по скорости их перемещения — функциональную активность нервной ткани.

Магнитно-резонансная томография (МРТ) — основана на том, что различные вещества, обладающие парамагнитными свойствами, способны в магнитном ноле поляризоваться и резонировать с ним.

Термоэнцефалоскопия — измеряет локальный метаболизм и кровоток мозга по его теплопродукции (недостатком его является то, что он требует открытой поверхности мозга, применяется в нейрохирургии).

Электроэнцефалография (ЭЭГ) – это регистрация суммарной электрической активности головного мозга. Электрические колебания в коре головного мозга обнаружены Р. Кетон (1875) и В.Я. Данилевский (1876). Запись ЭЭГ возможна как поверхности кожи головы, так и с поверхности коры в эксперименте и в клинике при нейрохирургических операциях. В этом случае она называется электрокортикограммой. Запись ЭЭГ производится с помощью биполярных (оба активны) или униполярных (активный и индифферентный) электродов, накладываемых попарно и симметрично в лобно-полюсных, лобных, центральных, теменных, височных и затылочных областях мозга. Кроме записи фоновой ЭЭГ используют функциональные пробы: экстероцептивные (световые, слуховые и др.), проприоцептивные, вестибулярные раздражители, гипервентиляция, сон. На ЭЭГ регистрируется четыре основных физиологических ритма: альфа-, бета-, гамма- и дельта- ритмы.

Метод вызванных потенциалов (ВП) – это измерение электрической активности мозга, возникающее в ответ на раздражение рецепторов, афферентных путей и центров переключения афферентной импульсации. В клинической практике ВП обычно получают в ответ на стимуляцию рецепторов, преимущественно зрительных, слуховых или соматосенсорных. ВП регистрируют при записи ЭЭГ, как правило, с поверхности головы, хотя их можно записать и с поверхности коры, а также в глубоких структурах мозга, например в таламусе. Методика ВП используется для объективного изучения сенсорных функций, процесса восприятия, проводящих путей мозга при физиологических и патологических состояниях (например, при опухолях мозга искажается форма ВП, уменьшается амплитуда, исчезают некоторые компоненты).

Функциональная компьютерная томография:

Позитронно-эмиссионная томография – это прижизненный метод функционального изотопного картирования мозга. Методика основана на введение в кровоток изотопов (O 15 , N 13 , F 18 и др.) в соединении с дезоксиглюкозой. Чем активнее участок мозга, тем больше поглощает он меченой глюкозы, радиоактивное излучение которой регистрируется детекторами, расположенными вокруг головы. Информация от детекторов поступает на компьютер, создающий на регистрируемом уровне «срезы» мозга, отражающее неравномерность распределения изотопа в связи с метаболической активностьюмозговых структур.

Функциональная магнитно-резонансная томография основана на том, что при потере кислорода гемоглобин приобретает парамагнитные свойства. Чем выше метаболическая активность мозга, тем больше объемный и линейный кровоток в данном участке мозга и тем меньше соотношение парамагнитного дезоксигемоглобина к оксигемоглобину. В мозге существует много очагов активации, что отражается в неоднородности магнитного поля. Этот метод позволяет выявить активно работающие участки мозга.

Реоэнцефалография основана на регистрации изменения сопротивления тканей переменному току высокой частоты в зависимости от их кровенаполнения. Реоэнцефалография позволяет косвенно судить о величине общего кровенаполнения мозга и его ассиметрии в различных сосудистых зонах, о тонусе эластичности сосудов мозга, состоянии внезапного оттока.

Эхоэнцефалография основана на свойстве ультразвука в разной степени отражаться от структур головы – ткани мозга и его патологических образований, ликвора, костей черепа и др. Кроме определения локализации некоторых структур мозга (особенно срединных) эхоэнцефалография благодаря использованию эффекта Доплера позволяет получить сведения о скорости и направлении движения крови в сосудах, участвующих в кровоснабжении мозга (Эффект Доплера - изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника или движением приёмника.).

Хронаксиметрия позволяет определить возбудимость нервной и мышечной тканей путем измерения минимального времени (хронаксии) при действии раздражителя удвоенной пороговой силы. Чаще определяют хронаксию двигательной системы. Хронаксия увеличивается при поражении спинальных мотонейронов, уменьшается при поражении двигательных нейронов коры. На ее величину влияет состояние структур ствола. Например таламуса и красного ядра. Можно также определить хронаксию сенсорных систем – кожной, зрительной, вестибулярной (по времени возникновения ощущений), что позволяет судить о функции анализаторов.

Стереотаксический метод позволяет с помощью устройства для точного перемещения электродов во фронтальном, сагиттальном и вертикальном направлениях ввести электрод (или микропипетку, термопару) в различные структуры головного мозга. Через введенные электроды можно регистрировать биоэлектрическую активность данной структуры, раздражать или разрушать ее, через микроканюли вводить химические вещества в нервные центры или желудочки мозга.

Метод раздражения различных структур ЦНС слабым электротоком с помощью электродов или химическими веществами (растворы солей, медиаторов, гормонов), подводимыми с помощью микропипеток механическим способом или с использованием электрофореза.

Метод выключения различных участков ЦНС можно производить механическим, электролитическим путем, используя замораживание или электрокоагуляцию, а также узконаправленным пучком или вводя снотворные вещества в сонную артерию, можно обратимо выключать некоторые отделы головного мозга, например большое полушарие.

Метод перерезки на разных уровнях ЦНС в эксперименте можно получить спинальный, бульбарный, мезэцефальный, диэнцефальный, декортицированный организмы, расщепленный мозг (операция комиссуротомии); нарушить связь между корковой областью и нижележащими структурами (операция лоботомии), между корой и подкорковыми структурами (нейронально изолированная кора). Этот метод позволяет глубже понять функциональную роль как центров, расположенных ниже перерезки, так и отключаемых высших центров.

Патологоанатомический метод – прижизненное наблюдение за нарушением функций и посмертное исследование мозга.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20

Существуют следующие методы исследования функций ЦНС:

1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.

2. Метод экстирпации (удаления) или разрушения участков мозга.

3. Метод раздражения различных отделов и центров мозга.

4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.

5. Электрофизиологические методы:

а. электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г.Бергером.

б. регистрация биопотенциалов различных нервных центров; используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро.

в. метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;

6. метод внутримозгового введения веществ с помощью микроинофореза;

7. хронорефлексометрия - определение времени рефлексов.

Конец работы -

Эта тема принадлежит разделу:

Лекции по физиологии человека

Лекции.. ПО ФИЗИОЛОГИИ ЧЕЛОВЕКА.. Физиология как наука Предмет задачи методы история физиологии Исходя из..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физиология как наука. Предмет, задачи, методы, история физиологии
Физиология (физис - природа) - это наука о нормальных процессах жизнедеятельности организма, составляющих его физиологических систем, отдельных органов, тканей, клеток и субклеточных структур, меха

Гуморальная и нервная регуляция. Рефлекс. Рефлекторная дуга. Основные принципы рефлекторной теории
Все функции организма регулируются с помощью двух систем регуляции: гуморальной и нервной. Филогенетически более древняя гуморальная регуляция это регуляция посредством физиологически активных веще

Биологические и функциональные системы
В 50-60-х годах канадский биолог Людвиг Берталанфи, используя математические и кибернетические подходы, разработал основные принципы деятельности биологических систем. Они включают: 1. Цел

И гомеокинезе
Способность к саморегуляции - это основное свойство живых систем Оно необходимо для создания оптимальных условий взаимодействия всех элементов, составляющих организм, обеспечения его целостности. В

И нейрогуморальной регуляции
В процессе развития организма происходят как количественные, так и качественные изменения. Например, увеличивается количество многих клеток и их размеры. Одновременно, в результате усложнения струк

Законы раздражения. Параметры возбудимости
Реакция клеток, тканей на раздражитель определяется законами раздражения 1.Закон "все или ничего": При допороговых раздражениях клетки, ткани ответной реакции не возникает. При п

Действие постоянного тока на возбудимые ткани
Впервые закономерности действия постоянного тока на нерв нервно-мышечного препарата исследовал в 19 веке Пфлюгер. Он установил, что при замыкании цепи постоянного тока, под отрицательным электродом

Строение и функции цитоплазматической мембраны клеток
Цитоплазматическая клеточная мембрана состоит из трех слоев: наружного белкового, среднего бимолекулярного слоя липидов и внутреннего белкового. Толщина мембраны 7,5-10 нМ. Бимолекулярный слой липи

Механизмы возбудимости клеток. Ионные каналы мембраны
Механизмы возникновения мембранного потенциала (МП) и потенциалов действия (ПД) В основном, передаваемая в организме информация имеет вид электрических сигналов (например

И потенциалов действия
Первый шаг в изучении причин возбудимости клеток сделал в своей работе "Теория мембранного равновесия" в 1924 г. английский физиолог Донанн. Он теоретически установил, что разность потенц

Соотношение фаз потенциала действия и возбудимости
Уровень возбудимости клетки зависит от фазы ПД. В фазу локального ответа возбудимость возрастает. Это фазу возбудимости называют латентным дополнением. В фазу реполяризации ПД, когда откры

Ультраструктура скелетного мышечного волокна
Двигательные единицы Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксо

Механизмы мышечного сокращения
При световой микроскопии было замечено, что в момент сокращения ширина А-диска не уменьшается, а I-диски и Н-зоны саркомеров суживаются. С помощью электронной микроскопии установлено, что длина нит

Энергетика мышечного сокращения
Источником энергии для сокращения и расслабления служит АТФ. На головках миозина есть каталитические центры, расщепляющие АТФ до АДФ и неорганического фосфата. Т.е. миозин является одновременно фер

Одиночное сокращение, суммация, тетанус
При нанесении на двигательный нерв или мышцу одиночного порогового или сверхпорогового раздражения, возникает одиночное сокращение. При его графической регистрации, на полученной кривой можно выдел

Влияние частоты и силы раздражения на амплитуду сокращения
Если постепенно увеличивать частоту раздражения, то амплитуда тетанического сокращения растет. При определенной частоте она станет максимальной. Эта частота называется оптимальной. Дальнейшее увели

Режимы сокращения. Сила и работа мышц
Различают следующие режимы мышечного сокращения: 1.Изотонические сокращения. Длина мышцы уменьшается, а тонус не изменяется. В двигательных функциях организма не участвуют. 2.Изом

Утомление мышц
Утомление - это временное снижение работоспособности мышц в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессир

Двигательные единицы
Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными во

Физиология гладких мышц
Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов

Проведение возбуждения по нервам
Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки - дендриты и аксоны, т.е. нервные волокна. В зависимости от структуры их делят на мякотные, имеющие миелиновую о

Постсинаптические потенциалы
Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза. (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Его выделение происходит н

Свойства нервных центров
Нервным центром (НЦ) называется совокупность нейронов в различных отделах ЦНС, обеспечивающих регуляцию какой-либо функции организма. Например, бульбарный дыхательный центр. Для проведения

Торможение в Ц.Н.С
Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на

Торможения в нервных центрах
Простейшим нервным центром является нервная цепь, состоящая из трех последовательно соединенных нейронов (рис). Нейроны сложных нервных центров имеют многочисленные связи между собой, образуя нервн

Механизмы координации рефлексов
Рефлекторная реакция в большинстве случаев осуществляется не одной, а целой группой рефлекторных дуг и нервных центров. Координация рефлекторной деятельности это такое взаимодействие нервных центро

Функции спинного мозга
Спинной мозг выполняет рефлекторную и проводниковую функции. Первая обеспечивается его нервными центрами, вторая проводящими путями. Он имеет сегментарное строение. Причем деление на сегме

Функции продолговатого мозга
Основными функциями продолговатого мозга являются проводниковая, рефлекторная и ассоциативная. Первая осуществляется проводящими путями, проходящими через него. Вторая, нервными центрами. В ромбови

Функции моста и среднего мозга
Мост имеет тесные функциональные связи со средним мозгом. Эти отделы ствола мозга также осуществляют проводниковую и рефлекторную функции. Проводниковая обеспечивается восходящими и нисходящими пут

Функции промежуточного мозга
Функционально в нем выделяют 2 отдела: таламус и гипоталамус. В таламусе происходит обработка почти всей информации, идущей от рецепторов к коре. Через него проходят сигналы от зрительных, слуховых

Функции ретикулярной формации ствола мозга
Ретикулярной формацией (РФ) называется сеть нейронов различных типов и размеров, имеющих многочисленные связи между собой, а также со всеми структурами ЦНС. Она располагается в толще серого веществ

Функции мозжечка
Мозжечок состоит из 2-х полушарий и червя между ними. Серое вещество образует кору и ядра. Белое образовано отростками нейронов. Мозжечок получает афферентные нервные импульсы от тактильных рецепто

Функции базальных ядер
Подкорковыми или базальными ядрами называются скопления серого вещества в толще нижней и боковой стенок больших полушарий. К ним относятся полосатое тело, бледный шар и ограда. Полосатое т

Общие принципы организации движений
Таким образом, за счет центров спинного, продолговатого, среднего мозга, мозжечка, подкорковых ядер организуются бессознательные движения. Сознательные осуществляются тремя путями: 1. С по

Лимбическая система
К лимбической системе относятся такие образования древней и старой коры, как обонятельные луковицы, гиппокамп, поясная извилина, зубчатая фасция, парагиппокампальная извилина, а также подкорковое м

Функции коры больших полушарий
Раньше считалось, что высшие функции мозга человека осуществляются корой больших полушарий. Еще в прошлом веке было установлено, что при удаление коры у животных, они теряют способность к выполнени

Функциональная асимметрия полушарий
Передний мозг образован двумя полушариями, которые состоят из одинаковых долей. Однако они играют разную функциональную роль. Впервые различия между полушариями описал 1863 г. невропатолог Поль Бро

Пластичность коры
Некоторые ткани сохраняют способность к образованию новых клеток из клеток-предшественников в течение всей жизни. Это клетки печени, кожи, энтероциты. Нервные клетки не обладают такой способностью.

Электроэнцефалография. Ее значение для экспериментальных исследований и клиники
Электроэнцефалография (ЭЭГ)-это регистрация электрической активности мозга с поверхности кожи головы. Впервые ЭЭГ человека зарегистрировал в 1929 г. немецкий психиатр Г.Бергер. При снятии ЭЭГ на ко

Вегетативной нервной системы
Все функции организма условно делят на соматические и вегетативные. Первые связаны с деятельностью мышечной системы, вторые выполняются внутренними органами, кровеносными сосудами, кровью, железами

Механизмы синаптической передачи в вегетативной нервной системе
Синапсы ВНС имеют в целом такое же строение, что и центральные. Однако отмечается значительное разнообразие хеморецепторов постсинаптических мембран. Передача нервных импульсов с преганглионарных в

Функциии крови
Кровь, лимфа, тканевая жидкость являются внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами

Состав крови. Основные физиологические константы крови
Кровь состоит из плазмы и взвешенных в ней форменных элементов - эритроцитов, лейкоцитов и тромбоцитов. Соотношение объема форменных элементов и плазмы называется гематокритом. В норме фор

Состав, свойства и значение компонентов плазмы
Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном

Механизмы поддержания кислотно-щелочного равновесия крови
Для организма важнейшее значение имеет поддержание постоянства реакции внутренней среды. Это необходимо для нормального протекания ферментативных процессов в клетках и внеклеточной среде, синтеза и

Строение и функции эритроцитов. Гемолиз
Эритроциты (Э)- это высокоспециализированные безъядерные клетки крови. Ядро у них утрачивается в процессе созревания. Эритроциты имеют форму двояковогнутого диска. В среднем их диаметр около 7,5 мк

Гемоглобин. Его разновидности и функции
Гемоглобин (Нb) это хемопротеин, содержащийся в эритроцитах. Его молекулярная масса 66000 дальтон. Молекулу гемоглобина образуют четыре субъединицы, каждая из которых включает гем, соединенный с ат

Реакция оседания эритроцитов
Удельный вес эритроцитов выше, чем плазмы. Поэтому в капилляре или пробирке с кровью, содержащей вещества препятствующие ее свертыванию, происходит оседание эритроцитов. Над кровью появляется светл

Функции лейкоцитов
Лейкоциты или белые кровяные тельца - это клетки крови, содержащие ядро. У одних лейкоцитов цитоплазма содержит гранулы, поэтому их называют гранулоцитами. У других зернистость отсутствует, их отно

Структура и функции тромбоцитов
Тромбоциты или кровяные пластинки имеют дисковидную форму и диаметр 2-5 мкм. Они образуются в красном костном мозге путем отщепления участка цитоплазмы с мембраной от мегакариоцитов Тромбоциты не и

Регуляция эритро- и лейкопоэза
У взрослых процесс образования эритроцитов - эритропоэз, происходит в красном костном мозге плоских костей. Они образуются из ядерных стволовых клеток, проходя стадии проэритробласт

Механизмы остановки кровотечения. Процесс свертывания крови
Остановка кровотечения, т.е. гемостаз может осуществляться двумя путями. При повреждении мелких сосудов она происходит за счет первичного или сосудисто-тромбоцитарного гемостаза. Он обусловлен суже

Фибринолиз
После заживления стенки сосуда необходимость в тромбе отпадает. Начинается процесс его растворения - фибринолиз. Кроме того, небольшое количество фибриногена постоянно переходит в фибрин. Поэтому ф

Противосвертывающая система
В здоровом организме не возникает внутрисосудистого свертывания крови, потому что имеется и система противосвертывания. Обе системы находятся в состоянии динамического равновесия. В противосвертыва

Факторы влияющие на свертывание крови
Нагревание крови ускоряет ферментативный процесс свертывания, охлаждение замедляет его. При механических воздействиях, например встряхивании флакона с кровью, свертывание ускоряется из-за разрушени

Группы крови. Резус-фактор. Переливание крови
В средние века делались неоднократные попытки переливания крови от животных человеку и от человека человеку. Однако практически все они заканчивались трагически. Первое удачное переливание человече

Защитная функция крови. Иммунитет. Регуляция иммунного ответа
Организм защищается от болезнетворных агентов с помощью неспецифических и специфических защитных механизмов. Одним из них являются барьеры, т.е. кожа и эпителий различных органов (ЖКТ, легких, поче

Общий план строения системы кровообращения
Кровообращение это процесс движения крови по сосудистому руслу, обеспечивающий выполнение ею своих функций. Физиологическую систему кровообращения составляют сердце и сосуды. Сердце обеспе

В различные фазы сердечной деятельности
Сокращение камер сердца называется систолой, расслабление - диастолой. В норме частота сердечных сокращений 60-80 в минуту. Цикл работы сердца начинается с систолы предсердий. Однако в физиологии с

Автоматия сердца
Сердечной мышце свойственны возбудимость, проводимость, сократимость и автоматия. Возбудимость это способность миокарда возбуждаться при действии раздражителя, проводимость - проводить возбуждение,

Механизмы возбудимости, автоматии и сокращений кардиомиоцитов
Как и в других возбудимых клетках возникновение мембранного потенциала кардиомиоцитов обусловлено избирательной проницаемостью их мембраны для ионов калия. Его величина у сократительных кардиомиоци

Соотношение возбуждения, возбудимости и сокращения сердца. Нарушения ритма и функций проводящей системы сердца
В связи с тем, что сердечная мышца является функциональным синцитием, сердце отвечает на раздражение по закону "все или ничего". При исследовании возбудимости сердца в различные фазы серд

Механизмы регуляции сердечной деятельности
Приспособление сердечной деятельности к изменяющимся потребностям организма осуществляется с помощью механизмов миогенной, нервной и гуморальной регуляции. Механизмами миогенной регуляции являются

Рефлекторная и гуморальная регуляция деятельности сердца
Выделяют три группы сердечных рефлексов: 1. Собственные или кардио-кардиальные. Они возникают при раздражении рецепторов самого сердца. 2. Кардио-вазальные. Наблюдаются при возбуж

Механические и акустические проявления
Деятельность сердца сопровождается механическими, акустическими и биоэлектрическими явлениями. К механическим проявлениям активности сердца относят верхушечный толчок. Это ритмическое выбухание кож

Электрокардиография
Электрокардиография это регистрация электрической активности мышцы сердца, возникающей в результате ее возбуждения. Впервые запись электрокардиограммы произвел в 1903 г. с помощью струнного гальван

Факторы обеспечивающие движение крови
Все сосуды малого и большого круга, в зависимости от строения и функциональной роли делят на следующие группы: 1. Сосуды эластического типа 2. Сосуды мышечного типа 3. Со

Скорость кровотока
Различают линейную и объемную скорость кровотока. Линейная скорость кровотока (Vлин.) это расстояние, которое проходит частица крови в единицу времени. Она зависит от суммарной площади поперечного

Кровяное давление
В результате сокращений желудочков сердца и выброса из них крови, а также наличия сопротивления току крови в сосудистом русле создается кровяное давление. Это сила, с которой кровь давит на стенку

Артериальный и венный пульс
Артериальным пульсом называются ритмические колебания артериальных стенок, обусловленные прохождением пульсовой волны. Пульсовая волна это распространяющееся колебание стенки артерий в результате с

Механизмы регуляции тонуса сосудов
Тонус сосудов во многом определяет параметры системной гемодинамики и регулируется миогенными, гуморальными и нейрогенными механизмами. В основе миогенного механизма лежит способность глад

Сосудодвигательные центры
В регуляции тонуса сосудов принимают участие центры всех уровней Ц.Н.С. Низшим являются симпатические спинальные центры. Они находятся под контролем вышележащих. В 1871 г. В.Ф.Овсянников установил,

Рефлекторная регуляция системного артериального кровотока
Все рефлексы, посредством которых регулируется тонус сосудов и деятельность сердца, делятся на собственные и сопряженные. Собственными являются рефлексы, возникающие при раздражении рецепторов сосу

Физиология микроциркуляторного русла
Микроциркуляторным руслом является комплекс микрососудов, составляющих обменно-транспортную систему. К нему относятся артериолы, прекапиллярные артериолы, капилляры, посткапиллярные венулы, венулы

Регуляция органного кровообращения
Сердце снабжается кровью через коронарные артерии, отходящие от аорты. Они разветвляются на эпикардиальные артерии, от которых отходят интрамуральные снабжающие кровью миокард. В сердце имеется неб

Механизмы внешнего дыхания
Внешнее дыхание осуществляется в результате ритмических движений грудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое

Показатели легочной вентиляции
Суммарное количество воздуха, которое вмещают легкие после максимального вдоха, называется общей емкостью легких (ОЕЛ). Она включает дыхательный объем, резервный объем вдоха, резервный объем выдоха

Функции воздухоносных путей. Защитные дыхательные рефлексы. Мертвое пространство
Воздухоносные пути делятся на верхние и нижние. К верхним относятся носовые ходы, носоглотка, к нижним гортань, трахея, бронхи. Трахея, бронхи и бронхиолы являются проводящей зоной легких. Конечные

Обмен газов в легких
В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа, 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе аль

Транспорт газов кровью
Напряжение кислорода в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего 0,3 об.% кислорода. Основная его часть транспортируется в виде HBO2. Максимальное

Обмен дыхательных газов в тканях
Обмен газов в капиллярах тканей происходит путем диффузии. Этот процесс осуществляется за счет разности их напряжения в крови, тканевой жидкости и цитоплазме клеток. Как и в легких для газообмена б

Регуляция дыхания. Дыхательный центр
В 1885 году Казанский физиолог Н.А. Миславский обнаружил, что в продолговатом мозге находится центр обеспечивающий смену фаз дыхания. Этот бульбарный дыхательный центр расположен в медиальной части

Рефлекторная регуляция дыхания
Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида: 1. Рецепторы растяже

Гуморальная регуляция дыхания
В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они

Дыхание при пониженном атмосферном давлении. Гипоксия
Атмосферное давление понижается при подъеме на высоту. Это сопровождается одновременным снижением парциального давления кислорода в альвеолярном воздухе. На уровне моря оно составляет 105 мм.рт.ст.

Дыхание при повышенном атмосферном давлении. Кессонная болезнь
Дыхание при повышенном атмосферном давлении имеет место во время водолазных и кессонных (колокол-кессон) работ. В этих условиях дыхание урежается до 2-4 раз в минуту. Вдох укорачивается, а выдох уд

Гипербарическая оксигенация
Для лечения заболеваний сосудов, сердечной недостаточности и др., сопровождающихся гипоксией, используется кислород. Если дается чистый кислород при обычном атмосферном давлении, эта процедура назы

Значение пищеварения и его виды. Функции пищеварительного тракта
Для существования организма необходимо постоянное восполнение энергетических затрат и поступление пластического материала, служащего для обновления клеток. Для этого требуется поступление из внешне

Состав и физиологическое значение слюны
Обработка пищевых веществ начинается в ротовой полости. У человека пища в ней находится 15-20 сек. Здесь она измельчается, смачивается слюной и превращается в пищевой комок. В ротовой полости проис

Механизмы образования слюны и регуляции слюноотделения
В железистых клетках ацинусов слюнных желез находятся секреторные гранулы. Они осуществляют синтез ферментов и муцина. Образующийся первичный секрет выходит из клеток в протоки. Там он разбавляется

Жевание
Жевание служит для механической переработки пищи, т.е. ее откусывания дробления, перетирания. При жевании пища смачивается слюной, и из нее формируется пищевой комок. Жевание происходит благодаря с

Глотание
Глотание сложнорефлекторный акт, который начинается произвольно. Сформированный пищевой комок перемещается на спинку языка, языком прижимается к твердому небу и передвигается на корень языка. Здесь

Состав и свойства желудочного сока. Значение его компонентов
В сутки образуется 1,5 - 2,5 литра сока. Вне пищеварения выделяется всего 10 - 15 мл сока в час. Такой сок обладает нейтральной реакцией и состоит из воды, муцина и электролитов. При приеме пищи ко

Регуляция желудочной секреции
Пищеварительная секреция регулируется посредством нейрогуморальных механизмов. В ней выделяют три фазы: сложнорефлекторную, желудочную и кишечную. Сложнорефлекторная делится на условно-рефлекторный

Роль поджелудочной железы в пищеварении
Пища, попавшая в двенадцатиперстную кишку подвергается воздействию поджелудочного, кишечного соков и желчи. Поджелудочный сок вырабатывается экзокринными клетками поджелудочной железы. Это

Механизмы выработки и регуляции секреции панкреатического сока
Проферменты и ферменты поджелудочной железы синтезируются рибосомами ацинарных клеток и сохраняются в них в виде гранул. В период пищеварения они выделяется в ацинарные протоки и разбавляются в них

Функции печени. Роль печени в пищеварении
Из всех органов печень играет ведущую роль в обмене белков, жиров, углеводов, витаминов, гормонов и других веществ. Ее основные функции: 1.Антитоксическая. В ней обезвреживаются токсически

Значение тонкого кишечника. Состав и свойства кишечного сока
Кишечный сок является продуктом бруннеровых, либеркюнновых желез и энтероцитов тонкого кишечника. Железы вырабатывают жидкую часть сока, содержащую минеральные вещества и муцин. Ферменты сока выдел

Полостное и пристеночное пищеварение
Пищеварение в тонком кишечнике осуществляется с помощью двух механизмов: полостного и пристеночного гидролиза. При полостном пищеварении ферменты действуют на субстраты, находящиеся в полости кишки

Функции толстого кишечника
Заключительное пищеварение происходит в толстом кишечнике. Его железистые клетки выделяют небольшое количество щелочного сока, с рН=8,0-9,0. Сок состоит из жидкой части и слизистых комочков. Жидкая

Моторная функция тонкого и толстого кишечника
Сокращения кишечника обеспечиваются гладкомышечными клетками, образующими продольный и циркулярный слои. Благодаря связям клеток между собой гладкие мышцы кишечника являются функциональным синцитие

Механизмы всасывания веществ в пищеварительном канале
Всасыванием называют процесс переноса конечных продуктов гидролиза из пищеварительного канала в межклеточную жидкость, лимфу и кровь. Главным образом оно происходит в тонком кишечнике. Его длина со

Пищевая мотивация
Потребление пищи организмом происходит в соответствии с интенсивностью пищевой потребности, которая определяется его энергетическими и пластическими затратами. Такая регуляция потребления пищи назы

Питательных веществ
Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность этого обмена заключается в том, что

Методы измерения энергетический баланса организма
Соотношение между количеством энергии, поступившей с пищей, и энергии, выделенной во внешнюю среду называется энергетическим балансом организма. Существует 2 метода определения выделяемой организмо

Основной обмен
Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций, называется основным обменом (ОО). Это затраты энергии на поддержание постоянства температуры тела, работу

Физиологические основы питания. Режимы питания
В зависимости от возраста, пола и профессии, потребление белков, жиров и углеводов должно составлять: М I-IV групп

Обмен воды и минеральных веществ
Содержание воды в организме в среднем 73%. Водный баланс организма поддерживается путем равенства потребляемой и выделяемой воды. Суточная потребность в ней составляет 20-40 мл/кг веса. С жидкостям

Регуляция обмена веществ и энергии
Высшие центры регуляции энергетического обмена и обмена веществ находятся в гипоталамусе. Они влияют на эти процессы через вегетативную нервную и гипоталамо-гипофизарную систему. Симпатический отде

Терморегуляция
Филогенетически сложились два типа регуляции температуры тела. У холоднокровных или пойкилотермных организмов интенсивность обмена веществ небольшая. Поэтому низка теплопродукция. Они неспособны по

Функции почек. Механизмы мочеобразования
В паренхиме почек выделяется корковое и мозговое вещество. Структурной единицей почки является нефрон. В каждой почке около миллиона нефронов. Каждый нефрон состоит сосудистого клубочка, находящего

Регуляция мочеобразования
Почки имеют высокую способность к саморегуляции. Чем ниже осмотическое давление крови, тем выраженнее процессы фильтрации и слабее реабсорбция и наоборот. Нервная регуляция осуществляется посредств

Невыделительнные функции почек
1.Регуляция постоянства ионного состава и объема межклеточной жидкости организма. Базисным механизмом регуляции объема крови и межклеточной жидкости является изменение содержания натрия. При увелич

Мочевыведение
Моча постоянно вырабатывается в почках и по собирательным трубочкам поступает в лоханки, а затем мочеточникам в мочевой пузырь. Скорость наполнения пузыря около 50 мл/час. В это время, называемое п

Функции кожи
Кожа выполняет следующие функции: 1.Защитная. Она защищает ткани, сосуды, нервные волокна находящиеся под ней. 2.Терморегуляторная. Обеспечивается посредством теплоизлучения, конв

Типы В.Н.Д

Речевые функции полушарий
Взаимодействие организма с внешней средой осуществляется посредством раздражителей или сигналов. В зависимости от характера, действующих на организм сигналов, И.П. Павлов выделил дв

Врождённые формы поведения. Безусловные рефлексы
Безусловные рефлексы - это врождённые ответные реакции организма на раздражение. Свойства безусловных рефлексов: 1. Они являются врождёнными, т.е. наследуются 2. Наследуются всеми

Условные рефлексы, механизмы образования, значение
Условные рефлексы (У.Р.) - это индивидуально приобретённые в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И.П. Павлов называл их временной свя

Безусловное и условное торможение
Изучая закономерности В.Н.Д. И.П. Павлов установил, что существует 2 вида торможения условных рефлексов: внешнее или безусловное и внутреннее или условное. Внешнее торможение - это процесс экстренн

Динамический стереотип
Все сигналы, поступающие из внешней среды, подвергаются анализу и синтезу. Анализ - это дифференцировка, т.е. различение сигналов. Безусловнорефлекторный анализ начинается в самих рецепторах и зака

Структура поведенческого акта
Поведением называется комплекс внешних взаимосвязанных реакций, которые осуществляются организмом для приспособления к изменяющимся условиям среды. Наиболее просто структура поведения была описана

Память и её значение в формировании приспособительных реакций
Огромное значение для индивидуального поведения имеют обучение и память. Выделяют генотипическую или врождённую память и фенотипическую, т.е. приобретённую память. Генотипическая память является ос

Физиология эмоций
Эмоции - это психические реакции, отражающие субъективное отношение индивида к объективным явлениям. Эмоции возникают в составе мотиваций и играют важную роль в формировании поведения. Выделяют 3 в

Стресс, его физиологическое значение
Функциональным состоянием называется тот уровень активности организма, при котором выполняется та или иная его деятельность. Низшими уровнями Ф.С. - кома, затем сон. Высшим агрессивно-оборонительно

Теории сна
Сон - это долговременное функциональное состояние, характеризующееся значительным снижением нервно - психической и двигательной активности, которое необходимо для восстановления способности мозга к

Теории механизмов сна
1.Химическая теория сна. Выдвинута в прошлом веке. Считалось, что в процессе бодрствования образуются гипнотоксины, которые вызывают засыпание. В последующем была отвергнута. Однако сейчас вновь вы

Типы В.Н.Д
На основании изучения условных рефлексов и оценки внешнего поведения животных И.П. Павлов выделил 4 типа В.Н.Д. В основу своей классификации он положил 3 показателя процессов возбуж

Функции полушарий
По И.П. Павлову взаимодействие организма с внешней средой осуществляется посредством раздражителей или сигналов. В зависимости от характера, действующих на организм сигналов, он выделил две сигналь

Мышление и сознание
Мышление это процесс познавательно деятельности человека, проявляющийся обобщенным отражением явлений внешнего мира и своих внутренних переживаний. Сущность мышления состоит в способности мысленно

Безусловнорефлекторные, условнорефлекторные, гуморальные механизмы регуляции половых функций
Особую роль в различных формах поведения играет половое поведение. Оно необходимо для сохранения и распространения вида. Половое поведение полностью описывается схемой П.К. Анохина.

Адптация, ее виды и периоды
Адаптация это приспособление строения, функций органов и организма в целом, а также популяции живых существ к изменениям окружающей среды. Различают генотипическую и фенотипическую адаптацию. В осн

Физиологические основы трудовой деятельности
Физиология труда, является прикладным разделом физиологии человека и изучает физиологические явления, сопровождающие различные виды физического и умственного труда. Умствен

Биоритмы
Биоритмами называются циклические изменения функций органов, систем и организма в целом. Главной характеристикой циклической активности является ее периодичность, т.е. время за кото

Периоды онтогенеза человека
Выделяют следующие периоды онтогенеза человека: Антенатальный онтогенез: 1.Герминальный или зародышевый период. Первая неделя после зачатия. 2.Эмбриональ

Развитие нервно-мышечной системы детей
У новорожденных анатомически имеются все скелетные мышцы. Количество мышечных волокон с возрастом в них не увеличивается. Рост мышечной массы происходит за счет увеличения размеров миофибрилл. Они

Показатели силы, работы и выносливости мышц в процессе развития
С возрастом сила мышечных сокращений увеличивается. Это объясняется не только увеличением длины и диаметра миоцитов, ростом общей мышечной массы, но и совершенствованием двигательных рефлексов. Нап

Физико-химические свойства крови детей
Относительное количество крови по мере взросления уменьшается. У новорожденных оно составляет 15% массы тела. У 11-ти летних 11%, 14-ти летних 9%, а у взрослых 7%. Удельный вес крови у новорожденны

Изменения клеточного состава крови в процессе постнатального онтогенеза
У новорожденных количество эритроцитов относительно больше, чем у взрослых и колеблется от 5,9-6,1 * 1012/л. К 12 дню после рождения оно составляет в среднем 5,4 * 1012/л, а к

Особенности сердечной деятельности у детей
У новорожденных происходит приспособление сердечно-сосудистой системы к существованию во внеутробном периоде. Сердце имеет округлую форму, а предсердия относительно больше желудочков, чем у взрослы

Функциональные свойства сосудистой системы у детей
Развитие сосудов по мере взросления сопровождается увеличением их длины и диаметра. В раннем возрасте диаметр вен и артерий примерно одинаков. Но чем старше ребенок тем больше возрастает диаметр ве

Сердечной деятельности и тонуса сосудов
У новорожденных слабо проявляются гетерометрические миогенные механизмы регуляции. Гомеометрические выражены хорошо. При рождении имеется нормальная иннервация сердца При возбуждении парасимпатичес

Возрастные особенности функций внешнего дыхания
По строению дыхательные пути детей заметно отличаются от органов дыхания взрослого. В первые дни постнатального онтогенеза носовое дыхание затруднено, так как ребенок рождается с недостаточно разви

Газообмен в легких и тканях, транспорт газов кровью
В первые сутки после рождения усиливается вентиляция и растет диффузионная поверхность легких. Вследствие высокой скорости вентиляции альвеол в альвеолярном воздухе новорожденных больше кислорода (

Особенности регуляции дыхания
Функции бульбарного дыхательного центра формируются в период внутриутробного развития. Недоношенные дети, рожденные в 6-7 месяцев, способны к самостоятельному дыханию. Дыхательные периодические дви

Общие закономерности развития питания в онтогенезе
В онтогенезе поэтапно происходит смена типов питания. Первым этапом является гистотрофное питание за счет запасов яйцеклетки, желточного мешка и слизистой оболочки матки. С момента образования плац

Особенности функций пищеварительных органов в грудном возрасте
После рождения включается первый пищеварительный рефлекс - сосание. Он формируется в онтогенез очень рано на 21-24 неделе внутриутробного развития. Сосание начинается в результате раздражения механ

Функции органов пищеварения при дефинитивном питании
С переходом на дефинитивное питание секреторная и моторная деятельность пищеварительного канала ребенка постепенно приближается к показателям зрелого возраста. Использование преимущественно плотной

Обмен веществ и энергии в детском возрасте
Поступление питательных веществ в организм ребенка на первые сутки не покрывает его энергозатраты. Поэтому используются запасы гликогена в печени и мышцах. Его количество в них быстро уменьшается.

Развитие механизмов терморегуляции
У родившегося ребенка ректальная температура выше, чем у матери и составляет 37,7-38,20 С. Через 2-4 часа она снижается до 350 С. Если снижение больше, это является одним из п

Возрастные особенности функций почек
Морфологически созревание почек заканчивается к 5-7 годам. Рост почек продолжается до 16 лет. Почки детей до 6-7 месяцев во многом напоминают эмбриональную почку. При этом вес почек (1:100) относит

Мозга ребёнка
В постнатальном онтогенезе происходит совершенствование безусловно - рефлекторных функций. По сравнению со взрослым человеком, у новорождённых значительно более выражены процессы иррадиации возбужд

Высшая нервная деятельность ребёнка
Ребёнок рождается с относительно небольшим количеством наследованных безусловных рефлексов, в основном защитного и пищевого характера. Однако после рождения он попадает в новую среду и эти рефлексы