Утепление

Простой емкостный датчик. Бесконтактный емкостный датчик – сделай сам Емкостной датчик схема своими руками

Простой емкостный датчик. Бесконтактный емкостный датчик – сделай сам Емкостной датчик схема своими руками

Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами превентивного предупреждения, которые оповещают людей или включают охранную сигнализацию задолго до непосредственного контакта нежелательного гостя с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, например в , по мнению автора, интересны, но усложнены.

В противовес им разработана простая электронная схема бесконтактного емкостного датчика (рис. 2.2), собрать которую по силам даже начинающему радиолюбителю. Устройство имеет высокую чувствительность по входу, что позволяет использовать его для предупреждения о приближении человека к сенсору Е1.

Принцип действия устройства основан на изменении емкости между сенсором-антенной Е1 и «землей» (общим проводом: всем тем, что соотносится к заземляющему контуру, — в данном случае это пол и стеніі помещения). При приближении человека эта емкость существенно изменяется, что оказывается достаточным для срабатывания микросхемы K561TЛ1.

Рис. 2.2. Электрическая схема бесконтактного емкостного датчика

В основе конструкции — два элемента микросхемы K561TЛ1 (DD1), включенные как инверторы. Эта микросхема имеет в своем составе четыре однотипных элемента с функцией 2И-НЕ с триггерами Шмита с гистерезисом (задержкой) на входе и инверсией по выходу.

Применение микросхемы K561TЛ1 обусловлено малым потреблением тока, высокой помехозащищенностью (до 45 % от уровня напряжения питания), работой в широком диапазоне питающего напряжения (в диапазоне 3—15 В), защищенностью по входу от статического электричества и кратковременного превышения входных уровней, и многими другими достоинствами, которые позволяют широко использовать микросхему в радиолюбительских конструкциях, не требуя каких-либо особых мер предосторожности и защиты.

Кроме того, микросхема K561TЛ1 позволяет включать свои независимые логические элементы параллельно, в качестве буферных элементов, вследствие чего мощность выходного сигнала пропорционально увеличивается. Триггеры Шмита—бистабильные схемы, способные работать с медленно возрастающими входными сигналами, в том числе с примесью помех. При этом обеспечивающие по выходу крутые фронты импульсов можно передавать в последующие узлы схемы для стыковки с другими ключевыми элементами и микросхемами. Микросхема K561TЛ (как, впрочем, и K561TЛ2) могут выделять управляющий сигнал (в том числе цифровой) для других устройств из аналогового или нечеткого входного импульса.

Зарубежный аналог К561ТЛ1 — CD4093B.

Схема включения инверторов — классическая, она описана в справочных изданиях. Особенность представленной разработки — в конструктивных нюансах. После включения питания на входе элемента DD1.1 присутствует неопределенное состояние, близкое к низкому логическому уровню. На выходе DD1.1 — высокий уровень, на выходе DD1.2 — опять низкий. Транзистор VT1 закрыт. Пьезоэлектрический капсюль НАІ (с внутренним генератором 34) не активен.

К сенсору Е1 подключена антенна — подойдет автомобильная телескопическая. При нахождении человека рядом с антенной изменяется емкость между штырем антенны и полом. От этого переключаются элементы DD1.1, DD1.2 в противоположное состояние. Для переключения узла человек среднего роста должен находиться (проходить) рядом с антенной длиной 35 см на расстоянии до 1,5 м. На выводе 4 микросхемы появляется высокий уровень напряжения, вследствие этого транзистор VT1 открывается и звучит капсюль НА1.

Подбором емкости конденсатора С1 можно изменить режим работы элементов микросхемы. Так, при уменьшении емкости С1 до 82—120 пФ узел работает иначе. Теперь звуковой сигнал звучит только, пока на вход DD1.1 воздействует наводки переменного напряжения — прикосновение человека.

Электрическую схему (рис. 2.2) можно использовать и как основу для триггерного сенсорного датчика. Для этого исключают постоянный резистор R1, экранированный провод, а сенсором являются контакты микросхемы 1 и 2.

Последовательно с R1 подключают экранированный провод (кабель РК-50, РК-75, экранированный провод для сигналов ЗЧ — подходят все типы) длиной 1—1,5 м, экран соединяется с общим проводом, центральная жила на конце соединяется со штырем антенны.

При соблюдении указанных рекомендаций и применении указанных в схеме типов и номиналов элементов, узел генерирует звуковой сигнал частотой около 1 кГц (зависит от типа капсюля НА1) при приближении человека к штырю антенны на расстояние 1,5—1 м. Триггерный эффект отсутствует. Как только объект удаляется от антенны, датчик переходит в режим охраны (ожидания).

Эксперимент проводился также с животными— кошкой и собакой: на их приближение к сенсору-антенне узел не реагирует.

Возможности устройства трудно переоценить. В авторском варианте оно смонтировано рядом с дверной коробкой; входная дверь — металлическая.

Громкость сигнала ЗЧ, излучаемого капсюлем НА1, достаточна для того, чтобы услышать его на закрытой лоджии (она сопоставима с громкостью квартирного звонка).

Источник питания— стабилизированный, с напряжением 9—15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько микроампер) и увеличивается до 22—28 мА при активной работе излучателя НА1. Бестрансформаторный источник применять нельзя из-за вероятности поражения электрическим током. Оксидный конденсатор С2 действует как дополнительный фильтр по питанию, его тип — К50-35 или аналогичный, на рабочее напряжение не ниже напряжения источника питания.

При эксплуатации узла выявлены интересные особенности. Напряжение питания узла влияет на его работу: при увеличении напряжения питания до 15 В в качестве сенсора-антенны используется только обыкновенный многожильный неэкранированный электрический медный провод сечением 1—2 мм длиной 1 м; никакого экрана и резистора R1 в таком случае не надо, электрический медный провод подсоединяется непосредственно к выводам 1 и 2 элемента DD1.1. Эффект аналогичен. При изменении фазировки сетевой вилки источника питания узел катастрофически теряет чувствительность и способен работать только как сенсор (реагирует на прикосновение к Е1). Это актуально при любом значении напряжения источника питания в диапазоне 9—15 В. Очевидно, что второе назначение данной схемы — обыкновенный сенсор (или сенсор-триггер).

Эти нюансы следует учитывать при повторении устройства. Однако в случае правильного подключения, описанного здесь, получается важная составляющая охранной сигнализации, обеспечивающей безопасность жилищу, предупреждающей хозяев еще до возникновения нештатной ситуации.

Монтаж элементов осуществляется компактно на плате из стеклотекстолита. Корпус для устройства — любой из диэлектрического (непроводящего) материала. Для контроля включения питания устройство может быть снабжено индикаторным светодиодом, подключенным параллельно источнику питания.

Налаживание при точном соблюдении рекомендаций не требуется. Если экспериментировать с длиной экранирующего кабеля, длиной и площадью сенсора-антенны Е1 и изменением напряжения питания, возможно потребуется скорректировать сопротивление резистора R1 в широких пределах — от 0,1 до 100 МОм. Для уменьшения чувствительности увеличивают емкость конденсатора С1. Если это не приносит результатов, параллельно С1 включают постоянный резистор сопротивлением 5—10 МОм.

Рис. 2.3. Емкостной датчик

Неполярный конденсатор С1 — типа КМ6. Постоянный резистор R2— МЛТ-0,25. Резистор R1 — типа ВС-0,5, ВС-1. Транзистор VT1 необходим для усиления сигнала с выхода элемента DD1.2. Без этого транзистора капсюль НА1 звучит негромко. Транзистор VT1 можно заменить на КТ503, КТ940, КТ603, КТ801 с любым буквенным индексом.

Капсюль-излучатель НА1 может быть заменен на аналогичный с встроенным генератором 34 и рабочим током не более 50 мА, например FMQ-2015B, КРХ-1212В и аналогичными.

Благодаря применению капсюля с встроенным генератором узел проявляет интересный эффект: при близком приближении человека к сенсору-антенне Е1 звук капсюля монотонный, а при удалении (или приближении человека, начиная с расстояния 1,5 м до Е1) — капсюль издает стабильный по характеру прерывистый звук в соответствии с изменением уровня потенциала на выходе элемента DD1.2. (Подобный эффект лег в основу первого электронного музыкального инструмента — «Терменвокса».)

Для более полного представления о свойствах емкостного датчика автор рекомендует ознакомиться с материалом .

Если в качестве НА1 применить капсюль со встроенным гене-ратбром ЗЧ, например КРІ-4332-12, то при сравнительно большом удалении человека от сенсора-антенны звук будет напоминать сирену, а при максимальном приближении — прерывистый сигнал.

Некоторым минусом устройства можно считать отсутствие избирательности (системы распознавания «свой/чужой»), так узел будет сигнализировать о приближении к Е1 любого лица, в том числе вышедшего «за хлебом» хозяина квартиры. Основа работы устройства — электрические наводки и изменение емкости максимально полезны при эксплуатации в больших жилых массивах с развитой сетью электрических коммуникаций; очевидно, прибор будет бесполезен в лесу, в поле и везде, где нет электрических коммуникаций.

Кашкаров А. П. 500 схем для радиолюбителей. Электронные датчики.

Датчики движения – невероятно удобная вещь, которая позволяет управлять светом в комнате или контролировать открытие и закрытие дверей, а также может оповестить вас о нежелательных гостях. В этой статье мы расскажем, как сделать датчик движения своими руками в домашних условиях и рассмотрим сферу возможного применения данных устройств.

Кратко о датчиках

Один из самых простых видов датчиков — концевой выключатель или самовозвратная кнопка (без фиксации).

Она устанавливается у двери и реагирует на ее открытие и закрытие. С помощью нехитрой схемы данный аппарат включает свет в холодильнике. Ей можно оснастить кладовку или тамбур прихожей, дверь в подъезде, дежурную светодиодную подсветку, использовать данный выключатель как сигнализацию, которая оповестит об открытии или закрытии двери. Недостатками конструкции могут являться сложности в установке, и порой непрезентабельный внешний вид.

Аппараты, на основе и магнита, можно заметить на дверях и окнах охраняемых объектов. Их принцип работы очень похож на работу кнопки. Геркон может размыкать или соединять контакты при поднесении к нему обычного магнита. Таким образом, сам геркон устанавливается на дверной проем, а магнит вешается на дверь. Такая конструкция аккуратно выглядит и используется чаще, чем обычная кнопка. Недостаток устройств в узко специализированном применении. Для контроля открытых территорий, площадей, проходов они не годны.

Для открытых проходов существуют устройства, реагирующие на изменения в окружающей среде. К ним относятся фотореле, емкостные (датчики поля), тепловые (PIR), звуковые реле. Для фиксации пересечения определенного участка, контроля препятствия, наличия движения какого-либо объекта в зоне перекрытия, используют фото или звуковые эхо устройства.

Принцип работы таких датчиков основан на формировании импульса и его фиксации после отражения от объекта. При попадании в такую зону предмета, изменяется характеристика отраженного сигнала, и детектор формирует сигнал управления на выходе.

Для наглядности представлена принципиальная схема работы фотореле и звукового реле:

В качестве передающего устройства в оптических датчиках используются инфракрасные светодиоды, а в качестве приемника – фототранзисторы. Звуковые датчики работают в ультразвуковом диапазоне, поэтому их работа для нашего уха кажется бесшумной, однако каждый из них содержит маленький излучатель и улавливатель.

К примеру, замечательно снабдить детектором движения зеркало с подсветкой. Включение освещения будет происходить только в тот момент, когда человек будет находиться непосредственно возле него. Не желаете сделать такую самостоятельно?

Схемы сборки

Микроволновый

Для контроля открытых пространств и контроля наличия объектов в нужной зоне, существует емкостное реле. Принцип действия данного устройства заключается в измерении величины поглощения радиоволн. Каждый наблюдал или был участником этого эффекта, когда, приближаясь к работающему радиоприемнику, частота на которой он работает, сбивалась и появлялись помехи.

Поговорим о том, как сделать датчик движения микроволнового типа. Сердцем данного детектора является радио микроволновой генератор и специальная антенна.

На данной принципиальной схеме представлен простой способ сделать микроволновый датчик движения. Транзистор VT1 является высокочастотным генератором и по совместительству радио приемником. Детекторный диод выпрямляет напряжение, подавая смещение на базу транзистора VT2. Обмотки трансформатора Т1 настроены на разную частоту. В начальном состоянии, когда на антенну не воздействует внешняя емкость, амплитуды сигналов взаимно компенсируются и на детекторе VD1 нет напряжения.При изменении частоты, их амплитуды складываются и детектируются диодом. Транзистор VT2 начинает открываться. В качестве компаратора для четкой отработки состояний «включено» и «выключено», используется тиристор VS1, который управляет силовым реле на 12 Вольт.

Ниже предоставлена действенная схема реле присутствия на доступных компонентах, которая поможет собрать детектор движения своими руками или просто пригодится для ознакомления с устройством.

Тепловой

Тепловой ДД (PIR) самый распространенный сенсорный аппарат в хозяйственном секторе. Это объясняется дешевыми комплектующими, простой схемой сборки, отсутствием дополнительных сложных настроек, широким температурным диапазоном работы.

Готовый аппарат можно купить в любом магазине электротоваров. Часто этим сенсором снабжаются светильники, устройства сигнализации и прочие контроллеры. Однако сейчас мы расскажем, как сделать тепловой датчик движения в домашних условиях. Простая схема для повторения выглядит следующим образом:

Специальный тепловой датчик В1 и фото элемент VD1 составляют автоматизированный комплекс управления освещением. Устройство начинает работать только после наступления сумерек, порог срабатывания можно выставить резистором R2. Датчик подключает нагрузку при попадании перемещающегося человека в зону контроля. Время встроенного таймера для отключения можно выставить регулятором R5.

Самоделка из модуля для Arduino

Недорогой сенсор можно сделать из специальных готовых плат для радио конструктора. Так можно получить довольно миниатюрное устройство. Для сборки нам понадобятся модуль датчика движения для микроконтроллеров Arduino и модуль одноканального реле.

На каждой плате распаян разъем из трех штырьков, VCC +5 вольт, GND -5 вольт, OUT выход на детекторе и IN вход на плате реле. Для того, чтобы сделать устройство своими руками, необходимо с источника питания подать на платы 5 Вольт (плюс и минус), например, от зарядки для телефонов, а out и in соединить вместе. Соединения можно проводить с помощью разъемов, но надежнее будет все спаять. Можно руководствоваться схемой ниже. Миниатюрный транзистор, как правило, уже встроен в модуль реле, поэтому дополнительно его ставить не нужно.

При перемещении человека модуль подает сигнал на реле, и оно открывается. Обратите внимание, что есть реле высокого и низкого уровня. Его необходимо подбирать исходя из того, какой сигнал выдает датчик на выходе. Готовый детектор можно поместить в корпус и замаскировать в нужном месте. Дополнительно рекомендуем просмотреть видео, в которых наглядно демонстрируются инструкции по сборке самодельных датчиков движения в домашних условиях. Если у вас останутся какие-либо вопросы, вы всегда можете задать их в комментариях.

К каким только ухищрениям не прибегают владельцы, охраняя свою собственность! Начиная от простейших висячих замков величиной с хороший кирпич (на Севере в ход шли даже... волчьи капканы!) до современной сигнализации со сложнейшей электроникой. Электронная охрана часто строится на том, что преступник сам себя чем-то выдаст, пошлет информацию о своем появлении. Это может быть звук шагов - электронные "уши" мгновенно среагируют и дадут сигнал об опасности. Существуют системы охраны, реагирующие на излучение человека, спектральный состав которого резко отличается от основного фона. Но и преступник не дремлет, стараясь стать незамеченным при совершении своих черных дел - появляются специальные маскировочные костюмы, всякие хитроумные приспособления.

Между тем есть абсолютно надежная система защиты. Она настроена на такое физическое поле человека, для которого сама природа исключает возможность каких-либо преград. Это поле гравитации, которым обладает каждый предмет, имеющий массу. Гравитация - это тяготение (притяжение), универсальное взаимодействие между любыми видами физической материи (обычным веществом, любыми физическими полями), так гласит третий закон Исаака Ньютона.

Этот принцип и лег в основу прибора известного изобретателя Ш.Лифшица. Гравитационные силы ничтожно малы. Скажем, взаимное притяжение между двумя телами, расположенными на расстоянии в один метр друг от друга и при массе каждого в одну тонну, составляет всего около 0,006 г. Наблюдать их можно лишь с помощью громоздких устройств, которые используются разве что в планетариях. Прибор же Ш.Лифшица невелик, компактен, чрезвычайно прост в изготовлении и остроумен, как все гениальное. Основа его - прозрачный сосуд, склеенный из оргстекла. Внутри - перегородка, симметрично разделяющая его до половины высоты и выходящая наружу. С обеих сторон перегородки вмонтированы две трубки сечением 1 кв. мм. По бокам сосуда выходят две короткие трубки с краниками. Все соединения прибора герметичны.

Устанавливается сосуд на столе или на неподвижной площадке. Внутрь малых трубок вводят по капле подкрашенной жидкости. Обе капли должны находиться на одинаковом уровне. После этого через короткие трубки сосуд заполняют водой до уровня, при котором нижняя часть перегородки полностью погружается в жидкость, а до крышки сосуда остается слой воздуха в 2 - 3 мм. Краны закрывают, и прибор готов к работе. Если теперь к одному из его торцов приблизится человек, часть жидкости под действием гравитационной силы из одной половины сосуда перейдет в другую - в ту, к которой он подошел. А поскольку движение жидкости в разделенных частях сосуда сопряжено с движением воздушной прослойки, то переместятся и подкрашенные капли в малых трубочках. Удаление человека от прибора вызовет противоположный эффект - обратное смещение капель. Налицо демонстрация эффекта гравитации.

Если к прибору поднести гирю, то капля в левом капилляре поднимется, а в правом - опустится

Теперь догадываетесь, к чему мы клоним? Нужно только слегка усовершенствовать наш аппарат таким образом, чтобы он автоматически подавал сигнал при приближении к нему человека. Тут много вариантов. Двигаясь, подкрашенные капельки могут перекрывать луч света и заставлять срабатывать фотоэлемент, включать сирену.

Посмотрите на рисунок и вы лучше поймете механизм действия такого сторожа. Прибор действует, если его укрепить за бронированной дверью сейфа или за толстой бетонной стеной - для гравитации нет препятствий. Иными словами, подобное охранное устройство самое надежное.

Такой прибор автоматически подаст сигнал при приближении к нему человека.

Датчики приближения бывают емкостными, ультразвуковыми, оптическими. Автор Instrictables под ником Electro maker придумал простой оптический датчик приближения. Неудобен он лишь тем, что ток через инфракрасный светодиод никак не промодулирован, а фотодиод, соответственно, реагирует и на непрерывное излучение и требует экранировки от других источников света (например, трубкой). Схема прибора показана ниже:

Мастер выбирает компоненты для самоделки . Инфракрасные светодиод и фотодиод:

Постоянные резисторы:

Подстроечный резистор:

Операционный усилитель LM358:

Светодиод видимого свечения:

Панель для микросхемы (необязательна):

Вместо светодиода можно подключить пищалку со встроенным генератором, тогда соответствующий резистор становится ненужным:

Подойдёт и пищалка без встроенного генератора, если собрать внешний генератор звуковой частоты своими руками . На такой макетной плате типа perfboard места хватит:

Если вы обошли несколько Фикс Прайсов, и во всех кончились вечные двигатели, придётся воспользоваться источником питания попроще:

Установив компоненты на плату, мастер соединяет их по схеме пайкой:

Фотодиод и оба светодиода, как и батарейку (или блок питания), необходимо подключить в указанной на схеме полярности, микросхему правильно ориентировать. Разработчику попались прозрачный инфракрасный светодиод и чёрный фотодиод, но бывает и наоборот. Определить, что из них чем является, помогут батарейка, резистор и любой телефон с камерой.

Фотодиод и резистор на 10 кОм образуют делитель напряжения. При освещении фотодиода инфракрасными лучами, отражёнными, например, от руки, напряжение в точке подключения операционного усилителя к делителю возрастает. ОУ включён таким образом, что он работает как компаратор. Он сравнивает напряжение, поступающее с делителя, с напряжением, поступающим с подвижного контакта подстроечного резистора. Таким образом можно регулировать порог срабатывания датчика, с одной стороны, исключив ложные срабатывания, а с другой - обеспечив уверенное обнаружение приближения.

Настроив порог срабатывания, мастер проверяет работу датчика.

Несколько схем датчиков

В январе 2007 года издательство "Наука и Техника" выпустило книгу автора А.П.Кашкарова "Электронные датчики". На этой страничке хочу познакомить Вас с некоторыми из конструкций.

Очень хочется предупредить - данные схемы я НЕ собирал - работоспособность их полностью зависит от "порядочности" г-на Кашкарова!

В начале рассмотрим схемы с применением микросхемы К561ТЛ1. Первая схема - емкостное реле:

Микросхема К561ТЛ1 (зарубежный аналог CD4093B) - одна из самых популярных цифровых микросхем этой серии. Микросхема содержит 4 элемента 2И-НЕ с передаточной характеристикой триггера Шмита (имеет определенный гистерезис).

Данное устройство имеет высокую чувствительность, что позволяет использовать его в охранных устройствах, а также в устройствах, предупреждающих о небезопасном нахождении человека в опасной зоне (например в распиловочных станках). Принцип устройства основан на изменении емкости между штырем антенны (используется стандартная автомобильная антенна) и полом. По утверждению автора, данная схема срабатывает при приближении человека среднего размера на расстояние около 1,5 метров. В качестве нагрузки транзистора может использоваться, например, электромагнитное реле с током срабатывания не более 50 миллиампер, которое своими контактами включает исполнительное устройство (сирену и проч.). Конденсатор С1 служит для снижения вероятности срабатывания устройства от помех.

Следующее устройство - датчик влажности:

Особенностью схемы является применение в качестве датчика переменного конденсатора С2 типа 1КЛВМ-1 с воздушным диэлектриком. Если воздух сухой - сопротивление между пластинами конденсатора составляет более 10 Гигаом, а уже при небольшой влажности сопротивление уменьшается. По сути этот конденсатор представляет собой высокоомный резистор с изменяющимся в зависимости от внешних условий абсорбированной атмосферной влажности сопротивлением. При сухом климате сопротивление датчика велико, и на выходе элемента D1/1 присутствует низкий уровень напряжения. при увеличении влажности сопротивление датчика уменьшается, возникает генерация импульсов, на выходе схемы присутствуют короткие импульсы. При увеличении влажности частота генерации импульсов увеличивается. В определенный момент влажности генератор на элементе D1/1 превращается в генератор импульсов. на выходе устройства появляется непрерывный сигнал.

Схема сенсорного датчика показана ниже:

Принцип действия этого устройства заключается в реагировании на "наводки" в теле человека или животного от различных электрических устройств. Чувствительность устройства очень велика - оно реагирует даже на прикосновение к пластине Е1 человека в матерчатых перчатках. При первом прикосновении устройство включается, при втором - выключается. Конденсатор С1 служит для защиты от помех и его в отдельном случае может и не быть...

Следующее устройство - индикатор влажности почвы. Это устройство может быть использовано, например, для автоматизации полива теплицы:


Устройство, на мой взгляд, весьма оригинально. Датчиком служит катушка индуктивности L1, закопанная в почву на глубину 35-50 сантиметров.
Транзистор Т2 и катушка индуктивности совместно с конденсаторами С5 и С6 образуют автогенератор на частоту около 16 килогерц. При сухой почве амплитуда импульсов на коллекторе транзистора VT2 равна 3 вольтам. Увеличение влажности почвы приводит к понижению амплитуды этих импульсов. Реле включено. При некотором значении влажности генерация срывается, что приводит к выключению реле. Реле своими контактами выключает, например, насос или электромагнитный вентиль в цепи полива.
О деталях: Самой ответственной частью схемы является катушка. Эта катушка наматывается на отрезок пластмассовой трубы, диаметром 100 , длиной 300 миллиметров и содержит 250 витков, провода ПЭВ, диаметром 1 миллиметр. Намотка - виток к витку. Снаружи обмотка изолируется двумя - тремя слоями ПХВ изоляционной ленты. Транзисторы можно заменить на КТ315. Конденсаторы - типа КМ. Диоды VD1-VD3 - типа КД521 - КД522.
Вся конструкция питается от стабилизированного источника, напряжением 12 вольт. Ток потребления схемой равен (в режимах "влажно-сухо") 20-50 миллиампер.
Электронная схема собирается в небольшой герметичной коробке. Для возможности регулировки напротив движка R5 следует предусмотреть отверстие, которое после настройки также герметично закрывается. Для питания использован маломощный трансформатор с выпрямителем и стабилизатором на КР142ЕН8Б. Реле должно нормально срабатывать при токе не более 30 миллиампер и напряжении 8-10 вольт. Для примера - можно применить РЭС10, паспорт 303. Для питания насоса контакты этого реле непригодны. В качестве промежуточного реле можно использовать автомобильное. Контакты такого реле выдерживают ток не менее 10 ампер. Можно применить и реле типа КУЦ от цветных телевизоров. Оба из рекомендованных реле имеют обмотку на 12 вольт и их можно включать до микросхемы стабилизатора (после выпрямителя и сглаживающего конденсатора), либо после стабилизатора (но тогда микросхему стабилизатора следует установить на небольшой теплоотвод). Также на корпусе следует установить два герметичных разъема (например типа РША). Один разъем используется для подключения сети и исполнительного устройства (насос), другой - для подключения катушки.
Настройка схемы сводится к регулированию чувствительности устройства при помощи переменного резистора R5. Окончательная настройка производится на месте работы устройства более точной подстройкой резистора. Следует иметь в виду, что данное устройство несколько изменяет порог включения при изменении температуры почвы (но это не очень существенно, поскольку на глубине в 35-50 сантиметров температура почвы изменяется незначительно).
Весной у владельцев овощных ям и гаражей появляется еще одна забота - талые воды. Если вовремя не откачать воду - овощи приходят в негодность... Можно процедуру откачки воды поручить автоматике. Схема получается простенькой, а сэкономит Вам множество времени и нервов (эта схема не из книжки! ) :



Схема автоматической "водооткачки" работает на принципе электропроводности воды. Основным элементом контроля уровня является блок из трех пластин из нержавеющей стали. Пластины 1 и 2 имеют одинаковую длину, пластина 3 - датчик верхнего уровня воды. Пока уровень воды ниже уровня 3 пластины - на входе логического элемента D1 уровень логической еденицы, на выходе элемента уровень логического нуля - транзистор заперт, реле обесточено. При увеличении уровня воды датчик 3 через воду соединяется с общим проводом схемы (пластина 1) - на входе элемента уровень логического нуля, на выходе элемента - уровень логической еденицы - транзистор открывается - реле своими контактами включает насос. Одновременно с насосом на вход схемы подключается пластина 2 датчика. Эта пластина является датчиком нижнего уровня воды. Насос будет работать до тех пор, пока уровень воды не опустится ниже уровня пластин. После этого насос отключается и схема переходит в дежурный режим...
В схеме можно применить практически любые логические элементы КМОП технологии серий 176, 561,564. Реле РЭС22 используется на напряжение срабатывания 10-12 вольт. Данное реле имеет довольно мощные контакты, что позволяет непосредственно управлять насосом типа "Водолей" мощностью до 250 ватт. Для увеличения надежности работы полезно свободные группы контактов реле (их всего четыре) соединить параллельно и параллельно контактам реле включить цепочку из последовательно соединенных резистора на 100 ом (мощностью не менее 2 ватт) и конденсатора на 0,1 микрофарады (с рабочим напряжением не менее 400 вольт). Эта цепочка служит для уменьшения искрения на контактах в моменты коммутации. Если у Вас насос большей мощности - придется применить дополнительное промежуточное реле с контактами большей мощности (например пускатель ПМЕ 100 - 200...), обмотку которого (обычно на 220 вольт) коммутировать при помощи реле РЭС22. В этом случае обычно хватает одной пары контактов и искрогасящую цепочку параллельно контактам реле можно не ставить. Трансформатор питания использован на 12 вольт (был готовый) с мощностью около 5 ватт. При самостоятельном изготовлении следует учитывать тот факт что трансформатор будет работать непрерывно, поэтому лучше увеличить (для надежности) на 15-20 процентов количество витков первичной и вторичной обмоток по сравнению с расчетными. Использовать Китайские трансформаторы я бы Вам не советовал - при работе они очень сильно греются - может произойти пожар, либо трансформатор попросту сгорит, а Вы будете уверены в надежности работы схемы и перестанете наведываться в гараж... Результат - овощи испорчены...
Данное устройство эксплуатируется автором на протяжении 5 лет и показало высокую надежность. Соседи по гаражному кооперативу тоже высоко оценили этот "девайс" - уровень воды в их ямах также значительно понизился...

Можно подобное устройство изготовить и без микросхемы:



Реле в данной конструкции используется типа КУЦ (от цветных телевизоров). Этот тип реле имеет две пары замыкающих контактов. Одна пара используется для переключения пластин датчика, другая - для управления насосом. Следует иметь в виду, что реле типа КУЦ нежелательно использовать совместно с микросхемой - могут появиться ложные срабатывания от наводок!

Схема каких либо особенностей не имеет. Возможно, во время настройки придется подобрать резистор R2 в цепи смещения транзистора VT2, добиваясь четкого срабатывания реле при контакте датчика с водой.


На оставшихся элементах микросхемы можно собрать еще одно полезное устройство - имитатор охранной сигнализации:



Устройство предназначено для имитации системы охраны гаража. Для обеспечения бесперебойности работы схема снабжена автономным питанием из батареи аккумуляторов с напряжением 5 вольт. Для экономичности устройства в целом - служит фоторезистор R2. В темное время суток на фоторезистор свет не попадает - сопротивление его велико - на входе элемента присутствует напряжение логической еденицы - генератор вырабатывает импульсы. Светодиод - "моргает". В светлое время суток сопротивление фоторезистора уменьшается, что приводит к уменьшению напряжения на выводе 10 микросхемы до уровня логического нуля - генератор перестает возбуждаться. Частота импульсов зависит от номиналов конденсатора С1 и резистора R2. В качестве резервного источника использована батарея из 4 аккумуляторов типа КНГ-1,5. Емкости аккумуляторной батареи хватает для непрерывной работы схемы примерно на 20-30 суток (при пропадании сетевого напряжения).
Настройка сводится к подбору с помощью сопротивления резистора R1 уровня чувствительности схемы. Резистором R2 можно изменять частоту генератора.
Данное устройство относится к так называемому "пассивному" устройству защиты, но оно реально работает! Эксплуатация "моргасика" в течении более 5 лет показала его довольно высокую эффективность. За это время не было зафиксировано ни одной попытки вскрытия гаража (у соседей такие случаи бывали). Понятно, что серьезного жулика подобным устройством не напугаешь - (но где они, серьезные жулики - так, одна шпана...).