Утепление

Типы химической связи и механизм ее образования. Разновидности химической связи

Типы химической связи и механизм ее образования. Разновидности химической связи

Все химические соединения образуются посредством образования химической связи. И в зависимости от типа соединяющихся частиц различают несколько видов. Самые основные – это ковалентная полярная, ковалентная неполярная, металлическая и ионная. Сегодня речь пойдет об ионной.

Вконтакте

Что такое ионы

Она образуется между двумя атомами – как правило, при условии, что разница электроотрицательностей между ними очень велика. Электроотрицательность атомов и ионов оценивается по шкале Поллинга.

Поэтому для того чтобы правильно рассматривать характеристики соединений, было введено понятие ионности. Эта характеристика позволяет определить на сколько процентов конкретная связь представляет именно ионную.

Соединение с максимальной ионностью это фторид цезия, в котором она составляет примерно 97%. Ионная связь характерна для веществ, образованных атомами металлов, располагающихся в первой и второй группе таблицы Д.И. Менделеева, и атомами неметаллов, находящихся в шестой и седьмой группах этой же таблицы.

Обратите внимание! Стоит заметить, что не существует соединения, в котором взаимосвязь исключительно ионная. Для открытых на данный момент элементов нельзя добиться настолько большой разницы в электроотрицательности, чтобы получить 100%-ное ионное соединение. Поэтому определение ионной связи не совсем корректно, так как реально рассматриваются соединения с частичным ионным взаимодействием.

Зачем же ввели этот термин, если реально такого явления не существует? Дело в том, что этот подход помог объяснить многие нюансы в свойствах солей, оксидов и других веществ. Например, почему они хорошо растворимы в воде, а их растворы способны проводить электрический ток . Это невозможно объяснить ни с каких других позиций.

Механизм образования

Образование ионной связи возможно только при соблюдении двух условий: если атом металла, участвующий в реакции, способен легко отдать электроны, находящиеся на последнем энергетическом уровне, а атом неметалла способен эти электроны принять. Атомы металлов по своей природе являются восстановителями, то есть способны к отдаче электронов .

Это связано с тем, что на последнем энергетическом уровне в металле могут находится от одного до трех электронов, а радиус самой частицы достаточно большой. Поэтому сила взаимодействия ядра с электронами на последнем уровне настолько мала, что они могут легко уходить с него. С неметаллами ситуация совершенно иная. Они имеют маленький радиус , а количество собственных электронов на последнем уровне может быть от трех и до семи.

И взаимодействие между ними и положительным ядром достаточно сильная, но любой атом стремится к завершению энергетического уровня, поэтому атомы неметалла стремятся получить недостающие электроны.

И когда встречаются два атома – металла и неметалла, происходит переход электронов от атома металла к атому неметалла, при этом образуется химическое взаимодействие.

Схема соединения

На рисунке наглядно видно, как именно осуществляется образование ионной связи. Изначально существуют нейтрально заряженные атомы натрия и хлора.

Первый имеет один электрон на последнем энергетическом уровне, второй семь. Далее происходит переход электрона от натрия к хлору и образование двух ионов. Которые соединяются между собой с образованием вещества. Что такое ион? Ион – это заряженная частица, в которой количество протонов не равно количеству электронов .

Отличия от ковалентного типа

Ионная связь за счет своей специфичности не имеет направленности. Это связано с тем, что электрическое поле иона представляет собой сферу, при том оно убывает или возрастает в одном направлении равномерно, подчиняясь одному и тому же закону.

В отличие от ковалентной, которая образуется за счет перекрывания электронных облаков.

Второе отличие заключается в том, что ковалентная связь насыщенна . Что это значит? Количество электронных облаков, которые могут принимать участие в взаимодействии ограниченно.

А в ионной за счет того, что электрическое поле имеет сферическую форму, оно может соединяться с неограниченным количеством ионов. А значит, можно говорить о том, что она не насыщена.

Также она может характеризоваться еще несколькими свойствами:

  1. Энергия связи – это количественная характеристика, и она зависит от количества энергии, которое необходимо затратить на ее разрыв. Она зависит от двух критериев – длины связи и заряда ионов , участвующих в ее образовании. Связь тем прочнее, чем короче ее длина и больше заряды ионов, ее формирующих.
  2. Длина – этот критерий уже упоминался в предыдущем пункте. Он зависит исключительно от радиуса частиц, участвующих в образовании соединения. Радиус атомов изменяется следующим образом: уменьшается по периоду при увеличении порядкового номера и увеличивается в группе.

Вещества с ионной связью

Она характерна для значительного числа химических соединений. Это большая часть всех солей, в том числе и всем известная поваренная соль. Она встречается во всех соединениях, где есть непосредственный контакт между металлом и неметаллом . Вот некоторые примеры веществ с ионной связью:

  • хлориды натрия и калия,
  • фторид цезия,
  • оксид магния.

Также она может проявляться и в сложных соединениях.

Например, сульфат магния.

Перед вами формула вещества с ионной и ковалентной связью:

Между ионами кислорода и магния будет образовываться ионная связь, а вот сера и соединены между собой уже с помощью ковалентной полярной.

Из чего можно сделать вывод, что ионная связь характерна для сложных химических соединений.

Что такое ионная связь в химии

Виды химической связи — ионная, ковалентная, металлическая

Вывод

Свойства напрямую зависят от устройства кристаллической решетки . Поэтому все соединения с ионной связью хорошо растворимы в воде и других полярных растворителях, проводят и являются диэлектриками. При этом довольно тугоплавки и хрупки. Свойства этих веществ довольно часто применяются в устройстве электрических приборов.

Фундаментальной основой химической связи явилась теория химического строения А. М. Бутлерова (1861 г.), согласно которой свойства соединений зависят от природы и числа составляющих их частиц и химического строения. Эта теория нашла подтверждение не только для органических, но и неорганических веществ, поэтому ее следует считать фундаментальной теорией химии.

Понятие химической связи

Большинство простых веществ и все сложные вещества (соединения) состоят из атомов, определенным образом взаимодействующих друг с другом. Иными словами, между атомами устанавливается химическая связь.

Химическая связь - электронный феномен, заключающийся в том, что, по крайней мере, один электрон, находившийся в силовом поле своего ядра, оказывается в силовом поле другого ядра или нескольких ядер одновременно. При образовании химической связи энергия всегда выделяется, т.е. энергия образующейся частицы должна быть меньше суммарной энергии исходных частиц.

Под химической связью понимаются различные виды взаимодействий, обуславливающие устойчивое существование двух- и многоатомных соединений: молекул, ионов, кристаллических и иных веществ.

К основным чертам химической связи можно отнести:

  • снижение общей энергии двух- или многоатомной системы по сравнению с суммарной энергией изолированных частиц, из которых эта система образована;
  • перераспределение электронной плотности в области химической связи по сравнению с простым наложением электронных плотностей несвязанных атомов, сближенных на расстояние связи.

По своей природе химическая связь представляет собой взаимодействие между положительно заряженными ядрами и отрицательно заряженными электронами, а также электронов друг с другом.

Переход электрона от одного атома к другому, в результате чего образуются разноименно заряженные ионы с устойчивыми электронными конфигурациями, между которыми устанавливается электростатическое притяжение, является простейшей моделью ионной связи:

X X + + e - Y + e - Y - X + Y -

Параметры химической связи

Химическая связь осуществляется s- и p -электронами внешнего и d- электронами предвнешнего слоя. Эта связь характеризуется следующими параметрами:

  1. Длиной связи - межъядерным расстоянием между двумя химически связанными атомами.
  2. Валентным углом - углом между воображаемыми линиями, проходящими через центры химически связанных атомов.
  3. Энергией связи - количеством энергии, затрачиваемой на ее разрыв в газообразном состоянии.
  4. Кратностью связи - числом электронных пар, посредством которых осуществляется химическая связь между атомами.

Если мы будем сближать два протона, то между ними возникнут силы отталкивания, и о получении устойчивой системы говорить не приходится. Поместим в их поле один электрон. Здесь могут возникнуть два случая.

Первый, когда электрон находится между протонами (слева), и второй, когда он располагается за одним из них (справа).

В обоих случаях возникают силы притяжения. В первом случае составляющие этих сил (проекции) на ось, проходящую через центры протонов, направлены в противоположные стороны с силами отталкивания (слева) и могут их компенсировать. При этом возникает энергетически устойчивая система. Во втором случае составляющие сил притяжения направлены в разные стороны (справа) и трудно говорить об уравновешивании сил отталкивания между протонами. Отсюда следует, что для возникновения химической связи с образованием молекулы или иона электроны должны находиться преимущественно в межьядерном пространстве. Эта область называется связывающей , т.к. при нахождении там электронов образуется химическая связь. Область, находящаяся за ядрами, называется разрыхляющей , т.к. при попадании в нее электронов химическая связь не образуется.

Применив аналогичные рассуждения к молекуле водорода, можно прийти к выводу, что появление второго электрона в связывающей области еще более стабилизирует систему. Следовательно, для образования устойчивой химической связи необходима, по меньшей мере, одна электронная пара. Спины электронов в этом случае должны быть антипараллельны, т.е. направлены в разные стороны. Образование химической связи должно сопровождаться понижением полной энергии системы.

Рассмотрим изменение потенциальной энергии системы на примере сближения двух атомов водорода. Когда атомы находятся на очень большом расстоянии друг от друга, они не взаимодействуют и энергия такой системы близка к нулю. По мере их сближения возникают силы притяжения между электроном одного атома и ядром другого и наоборот. Эти силы увеличиваются обратно пропорционально квадрату расстояния между атомами. Энергия системы понижается. По мере сближения атомов начинают играть роль силы отталкивания между их ядрами и электронами. Увеличение сил отталкивания обратно пропорционально уже шестой степени расстояния. Кривая потенциальной энергии проходит через минимум, а затем резко уходит вверх.

Расстояние, соответствующее положению минимума на кривой, является равновесным межъядерным расстоянием и определяет длину химической связи. Так как атомы в молекуле участвуют в колебательном движении относительно положения равновесия, расстояние между ними постоянно меняется, т.е. атомы не жестко связаны друг с другом. Равновесное расстояние соответствует при данной температуре некоторому усредненному значению. С повышением температуры амплитуда колебания увеличивается. При какой-то достаточно большой температуре атомы могут разлететься на бесконечно большое расстояние друг от друга, что будет соответствовать разрыву химической связи. Глубина минимума по оси энергии определяет энергию химической связи, а величина этой энергии, взятая с обратным знаком, будет равна энергии диссоциации данной двухатомной частицы. Если сближаются атомы водорода, электроны которых имеют параллельные спины, между атомами возникают лишь силы отталкивания, а потенциальная энергия такой системы будет возрастать.

Количество энергии, выделяющееся при образовании химической связи, называется энергией химической связи Е св . Она имеет единицу измерения [кДж/моль]. Для многоатомных соединений с однотипными связями за энергию связи принимается среднее ее значение, рассчитанное делением энергии образования соединения из атомов на число связей. Например, энергию связи в метане определяют путем деления энергии образования молекулы СН 4 из атомов водорода и углерода на четыре (1640: 4 = 410 кДж/моль). Чем больше энергия химической связи, тем устойчивее молекулы. Например, молекула HF устойчивее молекулы НВr .

Важной характеристикой химической связи является ее длина l св , равная расстоянию между ядрами в соединении. Она зависит от размеров электронных оболочек и степени их перекрывания. Имеется определенная корреляция между длиной и энергией связи: с уменьшением длины связи обычно растет энергия связи и соответственно устойчивость молекул . Например, в ряду галогеноводородов от HF до HI длина связи растет, а ее энергия уменьшается.


Энергии и длины некоторых химических связей

Связь Е св ,
кДж/моль
l св ,
нм
Связь Е св ,
кДж/моль
l св ,
нм
Связь Е св ,
кДж/моль
l св ,
нм
Связь Е св ,
кДж/моль
l св ,
нм
536 0,092 348 0,154 432 0,128 614 0,134
360 0,142 495 0,121 299 0,162 839 0,120
436 0,074 1040 0,113 380 0,134 940 0,110

Виды химической связи



В образовании химической связи участвуют s- , р- и d -электроны, имеющие различную геометрическую конфигурацию электронных облаков и различные знаки волновых функций в пространстве. Для возникновения химической связи необходимо перекрывание частей электронных оболочек с одинаковым знаком волновой функции. В противном случае химическая связь не образуется. Это утверждение легко объяснить на примере наложения двух синусоид, которые в первом приближении могут отождествляться с волновыми функциями.

В случае наложения двух синусоид с разными знаками в одной и той же области (слева) суммарная составляющая их будет равна нулю - связи нет. В противоположном случае происходит сложение амплитуд колебаний и образуется новая синусоида - химическая связь образовалась (справа).

В зависимости от симметрии электронных облаков, в результате перекрывания которых образуется химическая связь, суммарное электронное облако будет иметь различную симметрию, в соответствии с которой они распадаются на три вида: σ -, π - и δ -связи.


σ-связь осуществляется при перекрывании облаков вдоль линии, соединяющей центры атомов, при этом максимальная электронная плотность достигается в межъядерном пространстве и имеет цилиндрическую симметрию относительно линии, соединяющей центры атомов. В образовании σ -связи в силу своей шаровой симметрии всегда принимают участие s -электроны. Они образуют σ -связь в результате перекрывания со следующими электронами другого атома: s- , р х -, d x 2 -y 2 -электронами. С электронами, находящимися на других орбиталях, например, р у или р x , возникновение химической связи невозможно, так как происходит перекрывание в областях, где электронная плотность имеет противоположные знаки. Возможность образования σ -связи s -электронами не исчерпывается, она может образоваться в случае перекрывания и других электронных облаков, таких, как двух р х или р х и d x 2 -y 2 .


π-связи возникают при перекрывании электронных облаков над и под линией, соединяющей центры атомов. Суммарные электронные облака также симметрично расположены относительно этой оси, но они не имеют цилиндрической симметрии, как в случае σ -связи. В силу своего пространственного расположения π -связь образуют электроны на таких парах орбиталей как р y -р y ,р z -р z ,р y -d xy .

δ-связь образуют только d -электроны за счет перекрывания всех четырех своих лепестков электронных облаков, расположенных в параллельных плоскостях. Такое возможно, когда в образовании связи участвуют d xy -d xy , d xz -d xz , d yz -d yz -электроны.

Существует и другой подход к классификации химической связи, основанный на характере распределения электронной плотности между атомами в молекуле, т.е. химическая связь рассматривается с точки зрения принадлежности электронной пары тому или иному атому. Возможны три случая:

  1. Электронная пара связывает в молекуле два одинаковых атома. В этом случае она в равной мере принадлежит им обоим. В молекуле нет разделения центров тяжести положительного и отрицательного зарядов. Они совпадают, и такая связь называется ковалентной неполярной .
  2. Если электронная пара связывает два различных атома, то она смещается в сторону более электроотрицательного атома. Центры тяжести положительного и отрицательного зарядов разделяются, связь становится полярной и носит название ковалентной полярной связи .
  3. Третий случай связан с полной передачей электронной пары во владение одного из атомов. Это происходит при взаимодействии двух атомов, резко отличающихся по электроотрицательности, т.е. способности удерживать электронную пару в своем электрическом поле. При этом атом, отдавший электроны, становится положительно заряженным ионом, а атом, принявший их,- отрицательным. В этом случае связь носит название ионной .

m определение химической связи;

m типы химических связей;

m метод валентных связей;

m основные характеристики ковалентной связи;

m механизмы образования ковалентной связи;

m комплексные соединения;

m метод молекулярных орбиталей;

m межмолекулярные взаимодействия.

ОПРЕДЕЛЕНИЕ ХИМИЧЕСКОЙ СВЯЗИ

Химической связью называют взаимодействие между атомами, приводящее к образованию молекул или ионов и прочному удерживанию атомов друг около друга.

Химическая связь имеет электронную природу, т. е. осуществляется за счёт взаимодействия валентных электронов. В зависимости от распределения валентных электронов в молекуле, различают следующие виды связей: ионная, ковалентная, металлическая и др. Ионную связь можно рассматривать как предельный случай ковалентной связи между атомами, резко отличающимися по природе.

ТИПЫ ХИМИЧЕСКОЙ СВЯЗИ

Ионная связь.

Основные положения современной теории ионной связи.

1.) Ионная связь образуется при взаимодействии элементов, резко отличающихся друг от друга по свойствам, т. е. между металлами и неметаллами.

2.) Образование химической связи объясняется стремлением атомов к достижению устойчивой восьмиэлектронной внешней оболочки (s 2 p 6).

Ca: 1s 2 2s 2 p 6 3s 2 p 6 4s 2

Ca 2+ : 1s 2 2s 2 p 6 3s 2 p 6

Cl: 1s 2 2s 2 p 6 3s 2 p 5

Cl – : 1s 2 2s 2 p 6 3s 2 p 6

3.) Образовавшиеся разноименно заряженные ионы удерживаются друг около друга за счёт электростатического притяжения.

4.) Ионная связь не направленная.

5.) Чисто ионной связи не существует. Так как энергия ионизации больше энергии сродства к электрону, то полного перехода электронов не происходит даже в случае пары атомов с большой разницей электроотрицательностей. Поэтому можно говорить о доле ионности связи. Наибольшая ионность связи имеет место во фторидах и хлоридах s-элементов. Так, в кристаллах RbCl, KCl, NaCl и NaF она равна 99, 98, 90 и 97% соответственно.

Ковалентная связь.

Основные положения современной теории ковалентной связи.

1.) Ковалентная связь образуется между элементами, сходными по свойствам, то есть, неметаллами.

2.) Каждый элемент предоставляет для образования связей 1 электрон, причём спины электронов должны быть антипараллельными.

3.) Если ковалентная связь образована атомами одного и того же элемента, то эта связь не полярная, т. е. общая электронная пара не смещена ни к одному из атомов. Если же ковалентная связь образована двумя разными атомам, то общая электронная пара смещена к наиболее электроотрицательному атому, это полярная ковалентная связь .

4.) При образовании ковалентной связи происходит перекрывание электронных облаков взаимодействующих атомов, в результате, в пространстве между атомами возникает зона повышенной электронной плотности, притягивающая к себе положительно заряженные ядра взаимодействующих атомов, и удерживающая их друг около друга. Вследствие этого снижается энергия системы (рис. 14). Однако при очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи , l св), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи – Е св.


Рис. 14. Зависимость энергии систем из двух атомов водорода с параллельными (1) и антипараллельными (2) спинами от расстояния между ядрами (Е – энергия системы, Е св – энергия связи, r – расстояние между ядрами, l – длина связи).

Для описания ковалентной связи используют 2 метода: метод валентных связей (ВС) и метод молекулярных орбиталей (ММО).

МЕТОД ВАЛЕНТНЫХ СВЯЗЕЙ.

В основе метода ВС лежат следующие положения:

1. Ковалентная химическая связь образуется двумя электронами с противоположно направленными спинами, причем эта электронная пара принадлежит двум атомам. Комбинации таких двухэлектронных двухцентровых связей, отражающие электронную структуру молекулы, получили название валентных схем.

2. Ковалентная связь тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Для наглядного изображения валентных схем обычно пользуются следующим способом: электроны, находящиеся во внешнем электронном слое обозначают точками, располагаемыми вокруг химического символа атома. Общие для двух атомов электроны показывают точками, помещаемыми между их химическими символами; двойная или тройная связь обозначается соответственно двумя или тремя парами общих точек:

N: 1s 2 2s 2 p 3 ;

C: 1s 2 2s 2 p 4

Из приведенных схем видно, что каждая пара электронов, связывающая два атома, соответствует одной черточке, изображающей ковалентную связь в структурных формулах:

Число общих электронных пар, связывающих атом данного элемента с другими атомами, или, иначе говоря, число образуемых атомом ковалентных связей, называется ковалентностью по методу ВС. Так, ковалентность водорода равна 1, азота – 3.

По способу перекрывания электронных облаков, связи бывают двух видов: s - связь и p - связь.

s - связь возникает при перекрывании двух электронных облаков по оси, соединяющей ядра атомов.

Рис. 15. Схема образования s - связей.

p - связь образуется при перекрывании электронных облаков по обе стороны от линии, соединяющей ядра взаимодействующих атомов.

Рис. 16. Схема образования p - связей.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ КОВАЛЕНТНОЙ СВЯЗИ.

1. Длина связи, ℓ. Это минимальное расстояние между ядрами взаимодействующих атомов, которое соответствует наиболее устойчивому состоянию системы.

2. Энергия связи, E min – это то количество энергии, которое необходимо затратить для разрыва химической связи и для удаления атомов за пределы взаимодействия.

3. Дипольный момент связи, , m=qℓ. Дипольный момент служит количественной мерой полярности молекулы. Для неполярных молекул дипольный момент равен 0, для неполярных не равен 0. Дипольный момент многоатомной молекулы равен векторной сумме диполей отдельных связей:

4. Ковалентная связь характеризуется направленностью. Направленность ковалентной связи определяется необходимостью максимального перекрывания в пространстве электронных облаков взаимодействующих атомов, которые приводят к образованию наиболее прочных связей.

Так как эти s-связи строго ориентированы в пространстве, в зависимости от состава молекулы они могут находиться под определенным углом друг к другу – такой угол называется валентным.

Двухатомные молекулы имеют линейное строение. Многоатомные молекулы имеют более сложную конфигурацию. Рассмотрим геометрию различных молекул на примере образования гидридов.

1. VI группа, главная подгруппа (кроме кислорода), Н 2 S, Н 2 Sе, Н 2 Те.

S 1s 2 2s 2 р 6 3s 2 р 4

У водорода в образовании связи участвует электрон с s-АО, у серы – 3р у и 3р z . Молекула Н 2 S имеет плоское строение с углом между связями 90 0 . .

Рис 17. Строение молекулы Н 2 Э

2. Гидриды элементов V группы, главной подгруппы: РН 3 , АsН 3 , SbН 3 .

Р 1s 2 2s 2 р 6 3s 2 р 3 .

В образовании связи принимают участие: у водорода s-АО, у фосфора - р у, р х и р z АО.

Молекула РН 3 имеет форму тригональной пирамиды (в основании – треугольник).

Рис 18. Строение молекулы ЭН 3

5. Насыщаемость ковалентной связи - это число ковалентных связей, которые может образовывать атом. Оно ограничено, т.к. элемент обладает ограниченным количеством валентных электронов. Максимальное число ковалентных связей, которые может образовывать данный атом в основном или возбуждённом состоянии, называется его ковалентностью.

Пример: водород – одноковалентен, кислород – двухковалентен, азот – трёхковалентен и т. д.

Некоторые атомы могут повышать свою ковалентность в возбуждённом состоянии за счёт разъединения спаренных электронов.

Пример. Be 0 1s 2 2s 2

У атома бериллия в возбужденном состоянии один валентный электрон находится на 2p-АО и один электрон на 2s-АО, то есть ковалентность Be 0 = 0 а ковалентность Be* = 2. В ходе взаимодействия происходит гибридизация орбиталей.

Гибридизация - это выравнивание энергии различных АО в результате смешения перед химическим взаимодействием. Гибридизация - условный прием, позволяющий предсказать структуру молекулы при помощи комбинации АО. В гибридизации могут принимать участие те АО, энергии которых близки.

Каждому виду гибридизации соответствует определенная геометрическая форма молекул.

В случае гидридов элементов II группы главной подгруппы в образовании связи участвуют две одинаковые sр-гибридные орбитали. Подобный тип связи называется sр-гибридизация.

Рис 19. Молекула ВеН 2 . sp-Гибридизация.

sp-Гибридные орбитали имеют несимметричную форму, в сторону водорода направлены удлиненные части АО с валентным углом, равным 180 о. Поэтому молекула ВеН 2 имеет линейное строение (рис.).

Строение молекул гидридов элементов III группы главной подгруппы рассмотрим на примере образования молекулы BH 3 .

B 0 1s 2 2s 2 p 1

Ковалентность B 0 = 1, ковалентность B* = 3.

В образовании связей принимают участие три sр-гибридные орбитали, которые образуются в результате перераспределения электронных плотностей s-АО и двух р-АО. Такой тип связи называется sр 2 - гибридизацией. Валентный угол при sр 2 - гибридизации равен 120 0 , поэтому молекула ВН 3 имеет плоское треугольное строение.

Рис.20. Молекула BH 3 . sp 2 -Гибридизация.

На примере образования молекулы СH 4 рассмотрим строение молекул гидридов элементов IV группы главной подгруппы.

C 0 1s 2 2s 2 p 2

Ковалентность C 0 = 2, ковалентность C* = 4.

У углерода в образовании химической связи участвуют четыре sр-гибридные орбитали, образованные в результате перераспределения электронных плотностей между s-АО и тремя р-АО. Форма молекулы СН 4 - тетраэдр, валентный угол равен 109 о 28`.

Рис. 21. Молекула СН 4 . sp 3 -Гибридизация.

Исключениями из общего правила являются молекулы Н 2 О и NН 3 .

В молекуле воды углы между связями равны 104,5 о. В отличии от гидридов других элементов этой группы, вода имеет особые свойства, она полярна, диамагнитна. Все это объясняется тем, что в молекуле воды тип связи sр 3 . То есть в образовании химической связи участвуют четыре sр - гибридные орбитали. На двух орбиталях находится по одному электрону, эти орбитали взаимодействуют с водородом, на двух других орбиталях находится по паре электронов. Наличие этих двух орбиталей и объясняет уникальные свойства воды.

В молекуле аммиака углы между связями равны примерно 107,3 о, то есть форма молекулы аммиака - тетраэдр, тип связи sр 3 . В образовании связи у молекулы азота принимает участие четыре гибридные sр 3 -орбитали. На трех орбиталях находится по одному электрону, эти орбитали связаны с водородом, на четвертой АО находится неподеленная пара электронов, которая обуславливает уникальность молекулы аммиака.

МЕХАНИЗМЫ ОБРАЗОВАНИЯ КОВАЛЕНТНОЙ СВЯЗИ.

МВС позволяет различать три механизма образования ковалентной связи: обменный, донорно-акцепторный, дативный.

Обменный механизм . К нему относят те случаи образования химической связи, когда каждый из двух связываемых атомов выделяет для обобществления по одному электрону, как бы обмениваясь ими. Для связывания ядер двух атомов нужно, чтобы электроны находились в пространстве между ядрами. Эта область в молекуле называется областью связывания (область наиболее вероятного пребывания электронной пары в молекуле). Чтобы произошел обмен не спаренными электронами у атомов необходимо перекрывание атомных орбиталей (рис. 10,11). В этом и заключается действие обменного механизма образования ковалентной химической связи. Атомные орбитали могут перекрываться только в том случае, если они обладают одинаковыми свойствами симметрии относительно межъядерной оси (рис. 10, 11, 22).

Рис. 22. Перекрывание АО, не приводящее к образованию химической связи.

Донорно-акцепторный и дативный механизмы .

Донорно-акцепторный механизм связан с передачей неподеленной пары электронов от одного атома на вакантную атомную орбиталь другого атома. Например, образование иона - :

Вакантная р-АО в атоме бора в молекуле BF 3 акцептирует пару электронов от фторид-иона (донор). В образовавшемся анионе четыре ковалентные связи В-F равноценны по длине и энергии. В исходной молекуле все три связи В-F образовались по обменному механизму.

Атомы, внешняя оболочка которых состоит только из s- или р-электронов, могут быть либо донорами, либо акцепторами неподеленной пары электронов. Атомы, у которых валентные электроны находятся и на d-АО, могут одновременно выступать и в роли доноров, и в роли акцепторов. Чтобы различить эти два механизма ввели понятия дативного механизма образования связи.

Простейший пример проявления дативного механизма - взаимодействие двух атомов хлора.

Два атома хлора в молекуле хлора образуют ковалентную связь по обменному механизму, объединяя свои неспаренные 3р-электроны. Кроме того, атом Сl - 1 передает неподеленную пару электронов 3р 5 - АО атому Сl - 2 на вакантную 3d-АО, а атом Сl - 2 такую же пару электронов на вакантную 3d -АО атома Сl - 1. Каждый атом выполняет одновременно функции акцептора и донора. В этом и есть дативный механизм. Действие дативного механизма повышает прочность связи, поэтому молекула хлора прочнее молекулы фтора.

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ.

По принципу донорно-акцепторного механизма образуется огромный класс сложных химических соединений - комплексные соединения.

Комплексные соединения - это соединения, имеющие в своем составе сложные ионы, способные к существованию как в кристаллическом виде, так и в растворе, включающие центральный ион или атом, связанный с отрицательно заряженными ионами или нейтральными молекулами ковалентными связями, образованными по донорно-акцепторному механизму.

Структура комплексных соединений по Вернеру.

Комплексные соединения состоят из внутренней сферы (комплексный ион) и внешней сферы. Связь между ионами внутренней сферы осуществляется по донорно-акцепторному механизму. Акцепторы называются комплексообразователями, ими часто могут быть положительные ионы металлов (кроме металлов IA группы), имеющие вакантные орбитали. Способность к комплексообразованию возрастает с увеличением заряда иона и уменьшением его размера.

Доноры электронной пары называются лигандами или аддендами. Лигандами являются нейтральные молекулы или отрицательно заряженные ионы. Количество лигандов определяется координационным числом комплексообразователя, которое, как правило, равно удвоенной валентности иона-комплексообразователя. Лиганды бывают монодентантными и полидентантными. Дентантность лиганда определяется числом координационных мест, которые лиганд занимает в координационной сфере комплексообразователя. Например, F - - монодентантный лиганд, S 2 O 3 2- - бидентантный лиганд. Заряд внутренней сферы равен алгебраической сумме зарядов составляющих ее ионов. Если внутренняя сфера имеет отрицательный заряд – это анионный комплекс, если положительный – катионный. Катионные комплексы называют по имени иона-комплексообразователя по-русски, в анионных комплексах комплексообразователь называется по-латыни с добавлением суффикса –ат . Связь между внешней и внутренней сферами в комплексном соединении – ионная.

Пример: K 2 – тетрагидроксоцинкат калия, анионный комплекс.

1. 2- - внутренняя сфера

2. 2K + - внешняя сфера

3. Zn 2+ - комплексообразователь

4. OH – - лиганды

5. координационное число – 4

6. связь между внешней и внутренней сферами ионная:

K 2 = 2K + + 2- .

7. связь между ионом Zn 2+ и гидроксильными группами – ковалентная, образованная по донорно-акцепторному механизму: OH – - доноры, Zn 2+ - акцептор.

Zn 0: … 3d 10 4s 2

Zn 2+ : … 3d 10 4s 0 p 0 d 0

Типы комплексных соединений :

1. Аммиакаты - лиганды молекулы аммиака.

Cl 2 – хлорид тетраамминмеди (II). Аммиакаты получают действием аммиака на соединения, содержащие комплексообразователь.

2. Гидроксосоединения - лиганды ОН - .

Na – тетрагидроксоалюминат натрия. Получают гидроксокомплексы действием избытка щелочи на гидроксиды металлов, обладающие амфотерными свойствами.

3. Аквакомплексы - лиганды молекулы воды.

Cl 3 – хлорид гексааквахрома (III). Аквакомплексы получают взаимодействием безводных солей с водой.

4. Ацидокомплексы - лиганды анионы кислот – Cl - , F - , CN - , SO 3 2- , I – , NO 2 – , C 2 O 4 – и др.

K 4 – гексацианоферрат (II) калия. Получают взаимодействием избытка соли, содержащей лиганд на соль, содержащую комплексообразователь.

МЕТОД МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ.

МВС достаточно хорошо объясняет образование и структуру многих молекул, но этот метод не универсален. Например, метод валентных связей не даёт удовлетворительного объяснения существованию иона , хотя еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода : энергия разрыва связи составляет здесь 2,65эВ. Однако никакой электронной пары в этом случае образовываться не может, поскольку в состав иона входит всего один электрон.

Метод молекулярных орбиталей (ММО) позволяет объяснить ряд противоречий, которые нельзя объяснить, используя метод валентных связей.

Основные положения ММО.

1. При взаимодействии двух атомных орбиталей, образуются две молекулярные орбитали. Соответственно, при взаимодействии n-атомных орбиталей, образуется n-молекулярных орбиталей.

2. Электроны в молекуле в равной степени принадлежат всем ядрам молекулы.

3. Из двух образовавшихся молекулярных орбиталей, одна обладает более низкой энергией, чем исходная, это связывающая молекулярная орбиталь , другая обладает более высокой энергией чем исходная, это разрыхляющая молекулярная орбиталь .

4. В ММО используют энергетические диаграммы без масштаба.

5. При заполнении энергетических подуровней электронами, используют те же правила, что и для атомных орбиталей:

1) принцип минимальной энергии, т.е. в первую очередь заполняются подуровни, обладающие меньшей энергией;

2) принцип Паули: на каждом энергетическом подуровне не может быть больше двух электронов с антипараллельными спинами;

3) правило Хунда: заполнение энергетических подуровней идёт таким образом, чтобы суммарный спин был максимальным.

6. Кратность связи. Кратность связи в ММО определяется по формуле:

, когда Кp= 0, связь не образуется.

Примеры.

1. Может ли существовать молекула Н 2 ?

Рис. 23. Схема образования молекулы водорода Н 2 .

Вывод: молекула Н 2 будет существовать, так как кратность связи Кр > 0.

2. Может ли существовать молекула Не 2 ?

Рис. 24. Схема образования молекулы гелия He 2 .

Вывод: молекула Не 2 не будет существовать, так как кратность связи Кр = 0.

3. Может ли существовать частица Н 2 + ?

Рис. 25. Схема образования частицы Н 2 + .

Частица Н 2 + может существовать, так как кратность связи Кр > 0.

4. Может ли существовать молекула О 2 ?

Рис. 26. Схема образования молекулы О 2 .

Молекула О 2 существует. Из рис.26 следует, что у молекулы кислорода имеется два неспаренных электрона. За счет этих двух электронов молекула кислорода парамагнитна.

Таким образом метод молекулярных орбиталей объясняет магнитные свойства молекул.

МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ.

Все межмолекулярные взаимодействия можно разделить на две группы: универсальные и специфические . Универсальные проявляются во всех молекулах без исключения. Эти взаимодействия часто называют связью или силами Ван-дер-Ваальса . Хотя эти силы слабые (энергия не превышает восемь кДж/моль), они являются причиной перехода большинства веществ из газообразного состояния в жидкое, адсорбции газов поверхностями твердых тел и других явлений. Природа этих сил электростатическая.

Основные силы взаимодействия:

1). Диполь – дипольное (ориентационное) взаимодействие существует между полярными молекулами.

Ориентационное взаимодействие тем больше, чем больше дипольные моменты, меньше расстояния между молекулами и ниже температура. Поэтому чем больше энергия этого взаимодействия, тем до большей температуры нужно нагреть вещество, чтобы оно закипело.

2). Индукционное взаимодействие осуществляется, если в веществе имеется контакт полярных и неполярных молекул. В неполярной молекуле индуцируется диполь в результате взаимодействия с полярной молекулой.

Cl d + - Cl d - … Al d + Cl d - 3

Энергия этого взаимодействия возрастает с увеличением поляризуемости молекул, то есть способности молекул к образованию диполя под воздействием электрического поля. Энергия индукционного взаимодействия значительно меньше энергии диполь-дипольного взаимодействия.

3). Дисперсионное взаимодействие – это взаимодействие неполярных молекул за счет мгновенных диполей, возникающих за счет флуктуации электронной плотности в атомах.

В ряду однотипных веществ дисперсионное взаимодействие возрастает с увеличением размеров атомов, составляющих молекулы этих веществ.

4) Силы отталкивания обусловлены взаимодействием электронных облаков молекул и проявляются при их дальнейшем сближении.

К специфическим межмолекулярным взаимодействиям относятся все виды взаимодействий донорно-акцепторного характера, то есть, связанные с переносом электронов от одной молекулы к другой. Образующаяся при этом межмолекулярная связь обладает всеми характерными особенностями ковалентной связи: насыщаемостью и направленностью.

Химическая связь, образованная положительно поляризованным водородом, входящим в состав полярной группы или молекулы и электроотрицательным атомом другой или той же молекулы, называется водородной связью. Например, молекулы воды можно представить следующим образом:

Сплошные черточки – ковалентные полярные связи внутри молекул воды между атомами водорода и кислорода, точками обозначены водородные связи. Причина образования водородных связей состоит в том, что атомы водорода практически лишены электронных оболочек: их единственные электроны смещены к атомам кислорода своих молекул. Это позволяет протонам, в отличие от других катионов, приближаться к ядрам атомов кислорода соседних молекул, не испытывая отталкивания со стороны электронных оболочек атомов кислорода.

Водородная связь характеризуется энергией связи от 10 до 40 кДж/моль. Однако этой энергии достаточно, чтобы вызвать ассоциацию молекул, т.е. их ассоциацию в димеры или полимеры, которые в ряде случаев существуют не только в жидком состоянии вещества, но сохраняются и при переходе его в пар.

Например, фтороводород в газовой фазе существует в виде димера.

В сложных органических молекулах существуют как межмолекулярные водородные связи так и внутримолекулярные водородные связи.

Молекулы с внутримолекулярными водородными связями не могут вступать в межмолекулярные водородные связи. Поэтому вещества с такими связями не образуют ассоциатов, более летучи, имеют более низкие вязкости, температуры плавления и кипения, чем их изомеры, способные образовывать межмолекулярные водородные связи.

К важнейшим характеристикам связи относятся: длина, полярность, дипольный момент, насыщаемость, направленность, прочность, кратность связи.

Длиной связи – называется расстояние между ядрами атомов в молекуле. Длина связи определяется размерами ядер и степенью перекрывания электронных облаков.

Длина связи в HF равна 0,92∙10 -10 , в HCl – 1,28∙10 -10 м. Химическая связь тем прочнее, чем меньше ее длина.

Углом связи (Валентным углом) называют угол между воображаемыми линиями, проходящими через ядра химически связанных атомов. ∟HOH=104 0 ,5; ∟H 2 S=92,2 0 ; ∟H 2 S е =91 0 ,0.

Важнейшей характеристикой химической связи является энергия , определяющая ее прочность.

Количественно прочность связи характеризуют энергией, затрачиваемой на ее разрыв, и измеряется в кДж, отнесенных к 1 моль вещества.

Поэтому количественно прочность связи характеризует энергия сублимации Е субл. вещества и энергия диссоциации молекулы на атомы Е дисс. . Под энергией сублимации понимается энергия, затрачиваемая для перехода вещества из твердого состояния в газообразное. Для двухатомных молекул энергия связи равна энергии диссоциации молекулы на два атома.

Например, Е дисс. (а следовательно Е св.) в молекуле H 2 составляет 435кДж/моль. В молекуле F 2 =159 кДж/моль, в молекуле N 2 =940 кДж/моль.

Для не двухатомных, а многоатомных молекул типа АВ n средняя энергия связи

в силу АВ n =А+nВ.

Например, энергия, поглощаемая в процессе

равна 924 кДж/моль.

Энергия связи

Е OH = = = = 462 кДж/моль.

Заключение о структуре молекул и строении вещества делают по результатам полученных разными методами. При этом используют полученную информацию не только о длинах и энергиях связи, валентных углах, но и других свойствах вещества, таких, например, как магнитные, оптические, электрические, тепловые и другие.

Совокупность экспериментально полученных данных о строении вещества дополняют и обобщают результаты квантово-химических расчетных методов, которые используют концепцию квантово-механической теории химической связи. Считается, что химическая связь в основном осуществляется валентными электронами. У s- и p- элементов валентными являются электроны орбиталей внешнего слоя, а у d-элементов – электроны s-орбитали внешнего слоя и d-орбитали предвнешнего слоя.

Природа химической связи.

Химическая связь образуется только в том случае, если при сближении атомов полная энергия системы (Е кин. +Е пот.) понижается.

Рассмотрим природу химической связи на примере молекулярного иона водорода H 2 + . (Он получается при облучении молекул водорода Н 2 электронами; в газовом разряде). Для такой простейшей молекулярной системы наиболее точно решается уравнение Шредингера.

В ионе водорода Н 2 + один электрон движется в поле двух ядер – протонов. Расстояние между ядрами равно 0,106 нм, энергия связи (диссоциация на атомы Н и ион Н +) составляет 255,7 кДж/моль. То есть частица прочная.

В молекулярном ионе Н 2 + действуют электростатические силы двух типов – силы притяжения электрона к обоим ядрам и силы отталкивания между ядрами. Сила отталкивания проявляется между положительно заряженными ядрами Н А + и Н А + , что можно представить в виде следующего рис. 3. Сила отталкивания стремится развести ядра друг от друга.

Рис. 3. Сила отталкивания (а) и притяжения (б) между двумя ядрами, возникающая при их сближении на расстояния порядка размеров атомов.

Силы притяжения действуют между отрицательно заряженным электроном е − и положительно заряженными ядрами Н + и Н + . Молекула образуется в том случае, если равнодействующая сил притяжения и отталкивания равна нулю, то есть взаимное отталкивание ядер должно быть скомпенсировано притяжением электрона к ядрам. Такая компенсация зависит от расположения электрона е − относительно ядер (рис.3 б и в). Здесь имеется в виду не положение электрона в пространстве (что нельзя определить), а вероятность нахождения электрона в пространстве. Расположение электронной плотности в пространстве, соответствующий рис. 3.б) способствует сближению ядер, а соответствующее рис. 3.в) – расталкиванию ядер, так как в этом случае силы притяжения направлены в одну сторону и отталкивание ядер не компенсируется. Таким образом, имеется область связывания, когда электронная плотность распределена между ядрами и область разрыхления или антисвязывания, когда электронная плотность распределена за ядрами.

Если электрон попадает в область связывания, то химическая связь образуется. Если же электрон попадает в область разрыхления, то химическая связь не образуется.

В зависимости от характера распределения электронной плотности в области связывания различают три основных типа химической связи: ковалентную, ионную и металлическую. В чистом виде эти связи не имеют места, и обычно в соединениях присутствует комбинация этих типов связи.

Типы связей.

В химии различают следующие типы связей: ковалентная, ионная, металлическая, водородная связь, связь Ван-дер-Ваальса, донорно-акцепторная связь, дативная связь.

Ковалентная связь

При образовании ковалентной связи атомы делятся друг с другом электронами. Примером ковалентной связи является химическая связь в молекуле Cl 2 . Впервые Льюис (1916 г.) предположил, что в такой связи каждый из двух атомов хлора делится одним из своих внешних электронов с другим атомом хлора. Для перекрывания атомных орбиталей два атома должны подойти друг к другу как можно ближе. Общая пара электронов образует ковалентную связь. Эти электроны занимают одну и туже орбиталь, а их спины направлены в противоположные стороны.

Таким образом, ковалентная связь осуществляется обобществлением электронов от разных атомов в результате спаривания электронов с противоположными спинами.

Ковалентная связь является широко распространенным типом связи. Ковалентная связь может возникать не только в молекулах, но и кристаллах. Она возникает между одинаковыми атомами (в молекулах Н 2 , Cl 2 , алмазе) и между разными атомами (в молекулах Н 2 О, NH 3 …)

Механизм возникновения ковалентной связи

Механизм рассмотрим на примере образования молекулы Н 2 .

Н+Н=Н 2 , ∆Н=-436 кДж/моль

Ядро свободного атома водорода окружено сферически симметричным электронным облаком, образованным 1s-электроном. При сближении атомов до определенного расстояния, происходит частичное перекрывание их электронных облаков (орбиталей) (рис. 4).

Рис. 4. Механизм образования связи в молекуле водорода.

Если у сблизившихся до касания атомов водорода расстояние между ядрами 0,106 нм, то после перекрывания электронных облаков, это расстояние составляет 0,074 нм.

В результате между центрами ядер возникает молекулярное двухэлектронное облако, обладающее максимальной электронной плотностью в пространстве между ядрами. Увеличение плотности отрицательного заряда между ядрами благоприятствует сильному возрастанию сил притяжения между ядрами, что приводит к выделению энергии. Химическая связь тем прочнее, чем больше перекрывание электронных орбиталей. В результате возникновения химической связи между двумя атомами водорода каждый из них достигает электронной конфигурации атома благородного газа - гелия.

Существует два метода, объясняющих с квантово-механических позиций образование области перекрытия электронных облаков, и образования соответственно ковалентной связи. Один из них называется метод ВС (валентных связей), другой МО (молекулярных орбиталей).

В методе валентных связей рассматривается перекрывание атомных орбиталей выделенной пары атомов. В методе МО молекулу рассматривают как целое и распределение электронной плотности (от одного электрона) размазано по всей молекуле. С позиции МО 2Н в Н 2 связаны за счет притяжения ядер к электронному облаку, расположенному между этими ядрами.

Изображение ковалентной связи

Связи изображают по-разному:

1). С помощью электронов в виде точек

В этом случае образование молекулы водорода показывают схемой

Н∙ + Н∙ → Н: Н

2). С помощью квадратных ячеек (орбиталей), как размещение двух электронов с противоположными спинами в одной молекулярной квантовой ячейке

Эта схема показывает, что молекулярный энергетический уровень ниже исходных атомных уровней, а значит молекулярное состояние вещества более устойчивое, чем атомное.

3). Ковалентную связь изображают чертой

Например, Н – Н. эта черта символизирует пару электронов.

Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной , если больше, то кратной двойной (две общие электронные пары), тройной (три общие электронные пары). Одинарная связь изображается одной чертой, двойная – двумя, тройная – тремя.

Черточка между атомами показывает, что у них пара электронов обобщена.

Классификация ковалентных связей

В зависимости от направления перекрывания электронных облаков различают σ-, π-, δ-связи. σ-связь возникает при перекрывании электронных облаков вдоль оси, соединяющей ядра взаимодействующих атомов.

Примеры σ-связи:

Рис. 5. Образование σ-связи между s-, p-, d- электронами.

Пример образования σ-связи при перекрывании s-s-облаков наблюдается в молекуле водорода.

π-связь осуществляется при перекрывании электронных облаков по обе стороны от оси, соединяющий ядра атомов.

Рис. 6. Образование π-связи между p-, d- электронами.

δ- связь возникает при перекрывании двух d-электронных облаков, расположенных в параллельных плоскостях. δ-связь менее прочная, чем π-связь, а π-связь менее прочная чем σ-связь.

Свойства ковалентной связи

а). Полярность.

Различают две разновидности ковалентной связи: неполярную и полярную.

В случае неполярной ковалентной связи электронное облако, образованное общей парой электронов, распределяется в пространстве симметрично относительно ядер атомов. Примером являются двухатомные молекулы, состоящие из атомов одного элемента: Н 2 , Cl 2 , О 2 , N 2 , F 2 . У них электронная пара в одинаковой мере принадлежит обоим атомам.

В случае полярной связи электронное облако, образующее связь, смещено к атому с большей относительной электроотрицательностью.

Примерами являются молекулы: НCl, Н 2 О, Н 2 S, N 2 S, NH 3 и др. Рассмотрим образование молекулы HCl, которое можно представить следующей схемой

Электронная пара смещена к атому хлора, т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1).

б). Насыщаемость.

Способность атомов участвовать в образовании ограниченного числа ковалентных связей называется насыщаемостью ковалентной связи. Насыщаемость ковалентных связей обусловлена тем, что в химическом взаимодействии участвуют электрона только внешних энергетических уровней, то есть ограниченное число электронов.

в). Направленность и гибридизация ковалентной связи.

Ковалентная связь характеризуется направленностью в пространстве. Это объясняется тем, что электронные облака имеют определенную форму и их максимальное перекрывание возможно при определенной пространственной ориентации.

Направленность ковалентной связи определяет геометрическое строение молекул.

Например, для воды она имеет треугольный вид.

Рис. 7. Пространственная структура молекулы воды.

Экспериментально установлено, что в молекуле воды H 2 O расстояние между ядрами водорода и кислорода составляет 0,096 нм (96 пм). Угол между линиями, проходящими через ядра, составляет 104,5 0 . Таким образом, молекула воды имеет угловую форму и ее строение можно выразить в виде представленного рисунка.

Гибридизация

Как показывают экспериментальные и теоретические исследования (Слейтер, Полинг) при образовании некоторых соединений, таких как BeCl 2 , BeF 2 , BeBr 2 состояние валентных электронов атома в молекуле описываются не чистыми s-, p-, d- волновыми функциями, а их линейными комбинациями. Такие смешанные структуры называются гибридными орбиталями, а процесс смешивания гибридизацией.

Как показывают квантово-химические расчеты смешивание s- и p- орбиталей атома – процесс благоприятный для образования молекулы. В этом случае выделяется больше энергии, чем при образовании связей с участием чистых s- и p- орбиталей. Поэтому гибридизация электронных орбиталей атома приводит к большому понижению энергии системы и соответственно повышению устойчивости молекулы. Гибридизированная орбиталь отличается большей вытянутостью по одну сторону от ядра, чем по другую. Поэтому электронная плотность в области перекрывания гибридного облака будет больше электронной плотности в области перекрывания отдельно s- и p- орбиталей, вследствие чего связь, образованная электронами гибридной орбитали, характеризуется большей прочностью.

Имеют место несколько типов гибридных состояний. При гибридизации s- и p- орбиталей (называется sp-гибридизация), возникают две гибридные орбитали, расположенные относительно друг друга под углом 180 0 . В этом случае образуется линейная структура. Такая конфигурация (структура) известна для большинства галогенидов щелочноземельных металлов (например, ВеX 2 , где X=Cl, F, Br), т.е. угол связи равен 180 0 С.

Рис. 8. sp-гибридизация

Другой тип гибридизации, называемый sp 2 -гибридизацией (образуется из одной s и двух p-орбиталей), приводит к образованию трех гибридных орбиталей, которые располагаются друг к другу под углом 120 0 . При этом в пространстве образуется тригональная структура молекулы (или правильного треугольника). Такие структуры известны для соединений ВX 3 (X=Cl, F, Br).

Рис. 9. sp 2 -гибридизация.

Не менее часто встречается sp 3 -гибридизация, которая образуется из одного s- и трех p- орбиталей. При этом образуется четыре гибридные орбитали ориентированные в пространстве симметрично четырем вершинам тетраэдра, то есть они расположены под углом 109 0 28 " . Такое пространственное положение называется тетраэдрическим. Такая структура известна для молекул NH 3 , Н 2 О и вообще для элементов II периода. Схематично её вид в пространстве можно отобразить следующим рисунком

Рис. 10. Пространственное расположение связей в молекуле аммиака,

спроецированное на плоскость.

Образование тетраэдрических связей за счет sp 3 -гибридизации можно представить в виде следующего (рис. 11):

Рис. 11. Образование тетраэдрических связей при sp 3 -гибридизации.

Образование тетраэдрических связей при sp 3 – гибридизации на примере молекулы CCl 4 представлено на рис. 12.

Рис.12. Образование тетраэдрических связей при sp 3 – гибридизации в молекулы CCl 4

Гибридизация касается не только s- и p-орбиталей. Для объяснения стереохимических элементов III и последующих периодов возникает необходимость в построении гибридных орбиталей одновременно включающих s-, p-, d- орбитали.

К веществам с ковалентной связью относятся:

1. органические соединения;

2. твердые и жидкие вещества, у которых связи образуются между парами атомов галогенов, а также между парами атомов водорода, азота и кислорода, например, Н 2 ;

3. элементы VI группы (например, спиральные цепочки теллура), элементы V группы (например, мышьяк), элементы IV группы (алмаз, кремний, германий);

4. соединения, подчиняющиеся правилу 8-N (такие как InSb, CdS, GaAs, CdTe), когда образующие их элементы расположены в периодической таблице Менделеева в II-VI, III-V группах.

В твердых телах с ковалентной связью могут для одного и того же вещества образовываться различные кристаллические структуры, энергия связи которых практически одинакова. Например, структура ZnS может быть кубической (цинковая обманка) или гексагональной (вюрцит). Расположение ближайших соседей в цинковой обманке и вюрците одинаково, а единственное и небольшое отличие в энергиях этих двух структур определяется расположением атомов, следующих за ближайшими. Подобная способность некоторых веществ называется аллотропией или полиморфизмом. Другим примером аллотропии является карбид кремния, который имеет целый ряд полититпов различной структуры от чисто кубической до гексагональной. Эти многочисленные кристаллические модификации ZnS, SiC существуют при комнатной температуре.

Ионная связь

Ионная связь представляет собой электростатическую силу притяжения между ионами с зарядами противоположного знака (т.е. + и −).

Представление об ионной связи сформировалось на основе идей В.Косселя. Он предположил (1916 г.), что при взаимодействии двух атомов один их них отдает, а другой принимает электроны. Таким образом, ионная связь образуется в результате переноса одного или нескольких электронов от одного атома к другому. Например, в хлориде натрия ионная связь образуется в результате переноса электрона от атома натрия к атому хлора. Вследствие такого переноса образуется ион натрия с зарядом +1 и ион хлора с зарядом -1. Они притягиваются друг к другу электростатическими силами, образуя устойчивую молекулу. Модель электронного переноса, предложенная Косселем, позволяет объяснить образование таких соединений как фторид лития, оксид кальция, оксид лития.

Наиболее типичные ионные соединения состоят из катионов металлов, принадлежащих к I и II группам периодической системы, и анионов неметаллических элементов, принадлежащих к VI и VII группам.

Легкость образования ионного соединения зависит от легкости образования входящих в него катионов и анионов. Легкость образования тем выше, чем меньшую энергию ионизации имеет атом, отдающий электроны (донор электронов), а атом, присоединяющий электроны (акцептор электронов), обладает большим сродством к электрону. Сродство к электрону – это мера способности атома присоединять электрон. Её количественно определяют как изменение энергии, происходящее при образовании одного моля однозарядных анионов из одного моля атомов. Это так называемое понятие «первое сродство к электрону». Второе сродство к электрону – это изменение энергии, происходящее при образовании одного моля двухзарядных анионов из одного моля однозарядных анионов. Данные понятия, то есть энергия ионизации и сродство к электрону, относятся к газообразным веществам и являются характеристиками атомов и ионов в газообразном состоянии. Но следует иметь в виду, что большинство ионных соединений наиболее устойчивы в твердом состоянии. Данное обстоятельство объясняется существованием у них в твердом состоянии кристаллической решетки. Возникает вопрос. Почему же все-таки ионные соединения более устойчивы в виде кристаллических решеток, а не в газообразном состоянии? Ответом на этот вопрос служит расчет энергии кристаллической решетки, основанный на электростатической модели. В дополнении к этому данный расчет является и проверкой теории ионной связи.

Для расчета энергии кристаллической решетки необходимо определить работу, которую нужно затратить на разрушение кристаллической решетки с образованием газообразных ионов. Для проведения расчета используется представление о силах притяжения и отталкивания. Выражение для потенциальной энергии взаимодействия однозарядных ионов получается суммированием энергии притяжения и энергии отталкивания

Е = Е прит + Е отт (1).

В качестве Е прит берется энергия кулоновского притяжения ионов разноименных знаков, например, Na + и Cl - для соединения NaCl

Е прит = -е 2 /4πε 0 r (2),

поскольку распределение электронного заряда в заполненной электронной оболочке сферически-симметрично. Благодаря отталкиванию, возникающему вследствие принципа Паули при перекрытии заполненных оболочек аниона и катиона, расстояние, на которое могут сблизиться ионы, ограниченно. Энергия отталкивания быстро изменяется с межъядерным расстоянием, и её можно записать в виде следующих двух приближенных выражений:

Е отт = А/r n (n≈12) (3)

Е отт = В∙ехр(-r/ρ) (4),

где А и В – константы, r-расстояние между ионами, ρ - параметр (характерная длина).

Следует заметить, что ни одно из этих выражений не соответствует сложному квантово-механическому процессу, который приводит к отталкиванию.

Несмотря на приближенность данных формул, они позволяют достаточно точно рассчитать и соответственно описать химическую связь в молекулах таких ионных соединений, как NaCl, KCl, CaO.

Так как электрическое поле иона имеет сферическую симметрию (рис. 13), то ионная связь в отличие от ковалентной не обладает направленностью. Взаимодействие двух противоположно заряженных ионов компенсируется силами отталкивания только в направлении, соединяющим центры ядер ионов, в других направлениях компенсация электрических полей ионов не происходит. Поэтому они способны взаимодействовать и с другими ионами. Таким образом, ионная связь не обладает насыщаемостью.

Рис. 13. Сферическая симметрия электростатического поля

разноименнозаряженных зарядов.

Вследствие ненаправленности и ненасыщаемости ионной связи энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Благодаря этому наиболее предпочтительная форма существования ионного соединения – кристалл. Например, в кристалле NaCl каждый катион имеет в качестве ближайших соседей шесть анионов.

Только при высоких температурах в газообразном состоянии ионные соединения существуют в виде неассоциированных молекул.

В ионных соединениях координационное число не зависит от специфики электронной структуры атомов, как в ковалентных соединениях, а определяется соотношением размеров ионов. При соотношении ионных радиусов в пределах 0,41 – 0,73 наблюдается октаэдрическая координация ионов, при соотношении 0,73-1,37 – кубическая координация и т.д..

Таким образом, в обычных условиях ионные соединения представляют собой кристаллические вещества. Понятие двухионных молекул, например, NaCL, CsCl к ним не применимо. Каждый кристалл состоит из большого числа ионов.

Ионную связь можно представить как предельную полярную связь, для которой эффективный заряд атома близок к единице. Для чисто ковалентной неполярной связи эффективный заряд атомов равен нулю. В реальных веществах чисто ионных и чисто ковалентных связей встречается мало. Большинство соединений имеет характер связи промежуточный между неполярной ковалентной и полярной ионной. То есть в данных соединениях ковалентная связь имеет частично ионный характер. Характер ионной и ковалентной связи в реальных веществах представлен на рисунке 14.

Рис. 14. Ионный и ковалентный характер связи.

Долю ионного характера связи называют степенью ионности. Она характеризуется эффективными зарядами атомов в молекуле. Степень ионности возрастает с увеличением разности электроотрицательностей образующих её атомов.

Металлическая связь

В атомах металлов внешние валентные электроны удерживаются значительно слабее, чем в атомах неметаллов. Это обуславливает потерю связи электронов с отдельными атомами на достаточно большой промежуток времени и их обобществление. Образуется обобществленный ансамбль из внешних электронов. Существование подобной электронной системы приводит к возникновению сил, которые удерживают положительные ионы металла в сближенном состоянии, несмотря на их одноименную заряженность. Такая связь называется металлической. Подобная связь характерна только для металла и существует в твердом и жидком состоянии вещества. Металлическая связь является одним из видов химической связи. Она основана на обобществлении внешних электронов, которые теряют связь с атомом и поэтому называются свободными электронами (рис. 15).

Рис. 15. Металлическая связь.

Подтверждением существования металлической связи являются следующие факты. Все металлы имеют высокую теплопроводность и высокую электропроводность, которая обеспечивается за счет наличия свободных электронов. Кроме того, это же обстоятельство определяет хорошую отражательную способность металлов к световому облучению, их блеск и непрозрачность, высокую пластичность, положительный температурный коэффициент электросопротивления.

Стабильность кристаллической решетки металлов невозможно объяснить такими видами связи как ионная и ковалентная. Ионная связь между атомами металла, находящихся в узлах кристаллической решетки, невозможна, так как они имеют один и тот же заряд. Ковалентная связь между атомами металла также маловероятна, поскольку каждый атом имеет от 8 до 12 ближайших соседей, а образование ковалентных связей с таким количеством обобществленных пар электронов неизвестно.

Металлические структуры характеризуются тем, что они имеют довольно редкое расположение атомов (межъядерные расстояния большие) и большое число ближайших соседей у каждого атома в кристаллической решетке. В таблице 1 указаны три типичные металлические структуры.

Таблица 1

Характеристики структур трех наиболее распространенных металлов

Видим, что каждый атом участвует в образовании большого числа связей (например, с 8 атомами). Столь большое число связей (с 8 или с 12 атомами) не может быть одновременно локализованы в пространстве. Связь должна осуществляться за счет резонанса колебательного движения внешних электронов каждого атома, в результате которого происходит коллективизация всех внешних электронов кристалла с образованием электронного газа. Во многих металлах для образования металлической связи достаточно взять по одному электрону от каждого атома. Именно это наблюдается для лития, у которого на внешней оболочке имеется всего один электрон. Кристалл лития представляет собой решетку ионов Li + (шаров радиусом 0,068 нм), окруженных электронным газом.

Рис. 16. Различные типы кристаллической упаковки: а-гексагональная плотная упаковка; б- гранецентрированная кубическая упаковка; в-объёмноцентрированная кубическая упаковка.

Между металлической и ковалентной связью имеется сходство. Оно заключается в том, что оба типа связи основаны на обобществлении валентных электронов. Однако ковалентная связь соединяет только два соседних атома, и общие электроны находятся в непосредственной близости от соединенных атомов. В металлической связи несколько атомов участвуют в обобществлении валентных электронов.

Таким образом, понятие металлической связи неразрывно связано с представлением о металлах как совокупности положительно заряженных ионных остовов с большими промежутками между ионами, заполненными электронным газом, при этом на макроскопическом уровне система остается электрически нейтральной.

Кроме вышерассмотренных типов химической связи существуют и другие типы связи, которые являются межмолекулярными: водородная связь, вандерваальсово взаимодействие, донорно-акцепторное взаимодействие.

Донорно-акцепторное взаимодействие молекул

Механизм образования ковалентной связи за счет двухэлектронного облака одного атома и свободной орбитали другого называется донорно-акцепторным. Атом или частица, предоставляющие для связи двухэлектронное облако называется донором. Атом или частица со свободной орбиталью, принимающие эту электронную пару называется акцептором.

Основные виды межмолекулярного взаимодействия. Водородная связь

Между молекулами, валентно-насыщенными, на расстояниях, превышающих размеры частиц, могут проявляться электростатические силы межмолекулярного притяжения. Их называют силы Ван-дер-Ваальса. Вандерваальсово взаимодействие всегда существует между близко расположенными атомами, но играет важную роль лишь в отсутствие более сильных механизмов связи. Это слабое взаимодействие с характерной энергией 0,2 эВ/атом имеет место между нейтральными атомами и между молекулами. Название взаимодействия связывается с именем Ван-дер-Ваальса, поскольку именно он впервые предположил, что уравнение состояния с учетом слабого взаимодействия между молекулами газа описывает свойства реальных газов много лучше, чем уравнение состояния идеального газа. Однако природа этой силы притяжения была объяснена лишь в 1930 году Лондоном. В настоящее время к Ван-дер-Ваальсову притяжению относят следующие три типа взаимодействий: ориентационное, индукционное, дисперсион-ное(эффект Лондона). Энергия Ван-дер-Ваальсова притяжения определяется суммой ориентационного, индукционного и дисперсионного взаимодействий.

Е прит = Е ор +Е инд + Е дисп (5).

Ориентационное взаимодействие (или диполь-дипольное взаимодействие) проявляется между полярными молекулами, которые при приближении поворачиваются (ориентируются) друг к другу разноименными полюсами так, чтобы потенциальная энергия системы молекул стала минимальной. Энергия ориентационного взаимодействия тем существеннее, чем больше дипольный момент молекул μ и меньше расстояние l между ними:

Е ор = -(μ 1 μ 2) 2 / (8π 2 ∙ε 0 ∙l 6) (6),

где ε 0 – электрическая постоянная.

Индукционное взаимодействие связано с процессами поляризации молекул окружающими диполями. Оно тем значительнее, чем выше поляризуемость α неполярной молекулы и больше дипольный момент μ полярной молекулы

Е инд = -(αμ 2)/ (8π 2 ∙ε 0 ∙l 6) (7).

Поляризуемость α неполярной молекулы называется деформационной, так как она связана с деформацией частицы, при этом μ характеризует смещение электронного облака и ядер относительно прежних положений.

Дисперсионное взаимодействие (эффект Лондона) возникает у любых молекул независимо от их строения и полярности. Вследствие мгновенного несовпадения центров тяжести зарядов электронного облака и ядер образуется мгновенный диполь, который индуцирует мгновенные диполи в других частицах. Движение мгновенных диполей становится согласованным. В результате соседние частицы испытывают взаимное притяжение. Энергия дисперсионного взаимодействия зависит от энергии ионизации Е I и поляризуемости молекул α

Е дисп = - (Е I 1 ∙Е I 2)∙ α 1 α 2 /(Е I 1 +Е I 2) l 6 (8).

Промежуточный характер между валентным и межмолекулярным взаимодействием имеет водородная связь. Энергия водородной связи невелика 8 – 80 кДж/моль, но больше энергии взаимодействия Ван-дерВаальса. Водородная связь характерна для таких жидкостей как вода, спирты, кислоты и обусловлена положительно поляризованным атомом водорода. Малые размеры и отсутствие внутренних электронов позволяют атому водорода, присутствующему в жидкости в каком-либо соединении, вступать в дополнительное взаимодействие с ковалентно с ним не связанным отрицательно поляризованным атомом другой или той же самой молекулы

А δ- - Н δ+ …. А δ- - Н δ+ .

То есть происходит ассоциация молекул. Ассоциация молекул приводит к уменьшению летучести, повышению температуры кипения и теплоты испарения, увеличению вязкости и диэлектрической проницаемости жидкостей.

Вода особенно подходящее вещество для образования водородной связи, так как её молекула имеет два атома водорода и две неподелённые пары у атома кислорода. Это обуславливает высокий дипольный момент молекулы (μ D = 1,86 D) и способность образовывать четыре водородные связи: две – как донор протонов и две – как акцептор протонов

(Н 2 О….Н – О…Н 2 О) 2 раза.

Из экспериментов известно, что с изменением молекулярной массы в ряду водородных соединений элементов третьего и последующего периодов температура кипения растет. Если данную закономерность применить к воде, то температура кипения у неё должна быть не 100 0 С, а 280 0 С. Данное противоречие подтверждает существование водородной связи в воде.

Эксперименты показали, что в воде формируются молекулярные ассоциаты в жидкой и особенно в твердой воде. Лед имеет тетраэдрическую кристаллическую решетку. В центре тетраэдра расположен атом кислорода одной молекулы воды, в четырех вершинах находятся атомы кислорода соседних молекул, которые соединены водородными связями с ближайшими соседями. В жидкой воде водородные связи частично разрушены, в её структуре наблюдается динамическое равновесие между ассоциатами молекул и свободными молекулами.

Метод валентных связей

Теория валентных связей или локализованных электронных пар исходит из положения, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар. В представлении теории валентных связей химическая связь локализована между двумя атомами, то есть она двухцентровая и двухэлектронная.

Метод валентных связей базируется на следующих основных положениях:

Каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар;

Одинарная ковалентная связь образуется двумя электронами с антипараллельными спинами, расположенными на валентных орбиталях связывающихся атомов;

При образовании связи происходит перекрывание волновых функций электронов, ведущее к увеличению электронной плотности между атомами и уменьшению общей энергии системы;

Любое взаимодействие между атомами возможно лишь при наличии химической связи. Такая связь является причиной образования устойчивой многоатомной системы - молекулярного иона, молекулы, кристаллической решетки. Прочная химическая связь требует много энергии для разрыва, поэтому она и является базовой величиной для измерения прочности связи.

Условия образования химической связи

Образование химической связи всегда сопровождается выделением энергии. Этот процесс происходит за счет уменьшения потенциальной энергии системы взаимодействующих частиц - молекул, ионов, атомов. Потенциальная энергия образовавшейся системы взаимодействующих элементов всегда меньше энергии несвязанных исходящих частиц. Таким образом, основанием для возникновения химической связи в системе является спад потенциальной энергии ее элементов.

Природа химического взаимодействия

Химическая связь - это следствие взаимодействия электромагнитных полей, возникающих вокруг электронов и ядер атомов тех веществ, которые принимают участие в образовании новой молекулы или кристалла. После открытия теории строения атома природа этого взаимодействия стала более доступной для изучения.

Впервые идея об электрической природе химической связи возникла у английского физика Г. Дэви, который предположил, что молекулы образуются по причине электрического притяжения разноименно заряженных частиц. Данная идея заинтересовала шведского химика и естествоиспытателя И.Я. Берцеллиуса, который разработал электрохимическую теорию возникновения химической связи.

Первая теория, объяснявшая процессы химического взаимодействия веществ, была несовершенной, и со временем от нее пришлось отказаться.

Теория Бутлерова

Более успешная попытка объяснить природу химической связи веществ была предпринята русским ученым А.М.Бутлеровым. В основу своей теории этот ученый положил такие предположения:

  • Атомы в соединенном состоянии связаны друг с другом в определенном порядке. Изменение этого порядка служит причиной образования нового вещества.
  • Атомы связываются между собой по законам валентности.
  • Свойства вещества зависят от порядка соединения атомов в молекуле вещества. Иной порядок расположения становится причиной изменения химических свойств вещества.
  • Атомы, связанные между собой, наиболее сильно влияют друг на друга.

Теория Бутлерова объясняла свойства химических веществ не только их составом, но и порядком расположения атомов. Такой внутренний порядок А.М. Бутлеров назвал «химическим строением».

Теория русского ученого позволила навести порядок в классификации веществ и предоставила возможность определять строение молекул по их химическим свойствам. Также теория дала ответ на вопрос: почему молекулы, содержащие одинаковое количество атомов, имеют разные химические свойства.

Предпосылки создания теорий химической связи

В своей теории химического строения Бутлеров не касался вопроса о том, что такое химическая связь. Для этого тогда было слишком мало данных о внутреннем строении вещества. Лишь после открытия планетарной модели атома американский ученый Льюис принялся разрабатывать гипотезу о том, что химическая связь возникает посредством образования электронной пары, которая одновременно принадлежит двум атомам. Впоследствии эта идея стала фундаментом для разработки теории ковалентной связи.

Ковалентная химическая связь

Устойчивое химическое соединение может быть образовано при перекрытии электронных облаков двух соседних атомов. Результатом такого взаимного пересечения становится возрастающая электронная плотность в межъядерном пространстве. Ядра атомов, как известно, заряжены положительно, и поэтому стараются как можно ближе притянуться к отрицательно заряженному электронному облаку. Это притяжение значительно сильнее, чем силы отталкивания между двумя положительно заряженными ядрами, поэтому такая связь является устойчивой.

Впервые расчеты химической связи были выполнены химиками Гейтлером и Лондоном. Ими была рассмотрена связь между двумя атомами водорода. Простейшее наглядное представление о ней может выглядеть следующим образом:

Как видно, электронная пара занимает квантовое место в обоих атомах водорода. Такое двуцентровое размещение электронов получило название «ковалентная химическая связь». Ковалентная связь типична для молекул простых веществ и их соединений неметаллов. Вещества, созданные в результате ковалентной связи, обычно не проводят электрический ток или же являются полупроводниками.

Ионная связь

Химическая связь ионного типа возникает при взаимном электрическом притяжении двух противоположно заряженных ионов. Ионы могут быть простыми, состоящими из одного атома вещества. В соединениях подобного типа простые ионы - чаще всего положительно заряженные атомы металлов 1,2 группы, потерявшие свой электрон. Образование отрицательных ионов присуще атомам типичных неметаллов и оснований их кислот. Поэтому среди типичных ионных соединений имеется множество галогенидов щелочных металлов, например CsF, NaCl, и других.

В отличие от ковалентной связи, ион не обладает насыщенностью: к иону или группе ионов может присоединиться различное число противоположно заряженных ионов. Количество присоединенных частиц ограничивается лишь линейными размерами взаимодействующих ионов, а также условием, при котором силы притяжения противоположно заряженных ионов должны быть больше, чем силы отталкивания одинаково заряженных частиц, участвующих в соединении ионного типа.

Водородная связь

Еще до создания теории химического строения опытным путем было замечено, что соединения водорода с различными неметаллами обладают несколько необычными свойствами. Например, температура кипения фтороводорода и воды значительно выше, чем это можно было ожидать.

Эти и другие особенности водородных соединений можно объяснить способностью атома Н + образовывать еще одну химическую связь. Такой тип соединения получил название «водородная связь». Причины возникновения водородной связи кроются в свойствах электростатических сил. Например, в молекуле фтороводорода общее электронное облако настолько смещено в сторону фтора, что пространство вокруг атома этого вещества насыщенно отрицательным электрическим полем. Вокруг атома водорода, лишенного своего единственного электрона, поле значительно слабее, и имеет положительных заряд. В результате возникает дополнительная взаимосвязь между положительными полями электронных облаков Н + и отрицательными F - .

Химическая связь металлов

Атомы всех металлов расположены в пространстве определенным образом. Порядок расположения атомов металлов называется кристаллической решеткой. При этом электроны различных атомов слабо взаимодействуют друг с другом, образуя общее электронное облако. Такой вид взаимодействия между атомами и электронами получил название «металлическая связь».

Именно свободным передвижением электронов в металлах можно объяснить физические свойства металлических веществ: электропроводность, теплопроводность, прочность, плавкость и другие.