Дизайн

В каком случае тело нагревается вследствие излучения. Тепловое излучение тел

В каком случае тело нагревается вследствие излучения. Тепловое излучение тел

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.

Электромагнитное излучение тела, находящегося в состоянии термодинамического равновесия, называют тепловым (температурным) излучением. Иногда под тепловым излучением понимают не только равновесное, но также и неравновесное излучение тел, обусловленное их нагреванием.

Такое равновесное излучение осуществляется, например, если излучающее тело находится внутри замкнутой полости с непрозрачными стенками, температура которых равна температуре тела.

В теплоизолированной системе тел, находящихся при одной и той же температуре, теплообмен между телами путем испускания и поглощения теплового излучения не может привести к нарушению термодинамического равновесия системы, так как это противоречило бы, второму началу термодинамики.

Поэтому для теплового излучения тел должно выполняться правило Прево: если два тела при одной и той же температуре поглощают разные количества энергии, то и их тепловое излучение при этой температуре должно быть различным.

Лучеиспускательной (излучательной) способностью или спектральной плотностью энергетической светимости тела называют величину Еn,т, численно равную поверхностной плотности мощности теплового излучения тела и интервале частот единичной ширины:

Где dW - энергии теплового излучения с единицы площади поверхности тела за единицу времени в интервале частот от v до v + dr.

Лучеиспускательная способность Еn,т, является спектральной характеристикой теплового излучения тела. Она зависит от частоты v, абсолютной температуры Т тела, а также от его материала, формы и состояния поверхности. В системе СИ Еn,т, измеряется в дж/м2.

Поглощательной способностью или монохроматическим коэффициентом поглощения тела называют величину Аn,т, показывающую, какая доля энергии dWпад, доставляемой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от v до v+dv, поглощается телом:

Аn,т - величина безразмерная. Она зависит, помимо частоты излучения и температуры тела, от его материала, формы и состояния поверхности.

Тело называется абсолютно черным, если оно при любой температуре полностью поглощает все падающие на него электромагнитные полны: Аn,т черн = 1.

Реальные тела не являются абсолютно черными, однако некоторые из них по оптическим свойствам близки к абсолютно черному телу (сажа, платиновая чернь, черный бархат в области видимого света имеют Аn,т, мало отличающиеся от единицы)

Тело называют серым,если его поглощательная способность одинакова для всех частот n и зависит только от температуры, материала и состояния поверхности тела



Между лучеиспускательной Еn,т и поглощательной Аn,т способностями любого непрозрачного тела существует соотношение (закон Киргофа в дифференциальной форме):

Для произвольной частоты и температуры отношение лучеиспускательной способности тела к его поглощательной способности одинаково для всех тел и равно лучеиспускательной способности en,т абсолютно черного тела, являющейся функцией только частоты и температуры (функция Кирхгофа Еn,т = Аn,тen,т = 0).

Интегральная излучательная способность (энергетическая светимость) тела:

представляет собой поверхностную плотность мощности теплового излучения тела, т.е. энергию излучения всех возможных частот, испускаемого с единицы поверхности тела за единицу времени.

Интегральная излучательная способность eТ абсолютно черного тела:

2. Законы излучения абсолютно черного тела

Законы излучения абсолютно черного тела устанавливают зависимость eТ и e n,Т от частоты и температуры.

Закон Cmeфана - Болъцмапа:

Величина σ- универсальная постоянная Стефана -Больцмана, равная 5,67 -10-8 вт/м2*град4.

Распределение энергии в спектре излучения абсолютно черного тела, т. е. зависимость en,Т, от частоты при различных температурах, имеет вид, изображенный на рисунке:

Закон Вина:

где с - скорость света в вакууме, a f(v/T) - универсальная функция отношения частоты излучения абсолютно черного тела к его температуре.

Частота излучения nмакс, соответствующая максимальному значению лучеиспускательной способности en,Т абсолютно черного тела, согласно закону Вина равна



Где b1 - постоянная величина, зависящая от вида функции f(n/T).

Закон смещения Buнa: частота, соответствующая максимальному значению лучеиспускательной способности en,Т абсолютно черного тела, прямо пропорциональна его абсолютной температуре.

С энергетической точки зрения черное излучение эквивалентно излучению системы бесконечно большого числа не взаимодействующих гармонических осцилляторов, называемых радиационными осцилляторами. Если ε(ν) – средняя энергия радиационного осциллятора с собственной частотой ν, то

ν= и

Согласно классическому закону о равномерном распределении энергии по степеням свободы ε(ν) = kT, где k постоянная Больцмана, и

Это соотношение называют формулой Релея-Джинса. В области больших частот она приводит к резкому расхождению с опытом, носящему название «ультра-Фиолетовой катастрофы: en,Т монотонно возрастает с ростом частоты, не имея максимума, а интегральная лучеиспускательная способность абсолютно черного тела обращается в бесконечность.

Причина вышеуказанных трудностей, возникших при отыскании вида функции Кирхгофа en,Т, связана с одним из основных положений классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения.

По квантовой теории Планка энергия радиационного осциллятора с собственной частотой v может принимать лишь определенные дискретные (квантованные) значения, отличающиеся на целое число элементарных порций - квантов энергии:

h = б,625-10-34 дж*сек - постоянная Планка (квант действия). В соответствии с этим излучение и поглощение энергии частицами излучающего тела (атомами, молекулами или ионами), обменивающимися энергией с радиационными осцилляторами, должно происходить, не непрерывно, а дискретно - отдельными порциями (квантами).

Попытки описания:

Термин был введён Густавом Кирхгофом в 1862.

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики. Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса.
На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.
Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с Формулой Рэлея - Джинса.
Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка.

Общая энергия теплового излучения определяется законом Стефана-Больцмана. Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Винна. Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению).

Очень близко по своим свойствам к чернотельному так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

24) Элементарная квантовая теория излучения. Главное здесь (коротко): 1) Излучение это следствие перехода квантовой системы из одного состояния в другое - с меньшей энергией. 2) Излучение происходит не непрерывно, а порциями энергии - квантами. 3) Энергия кванта равна разности энергии уровней. 4) Частота излучения определяется известной формулой Е=hf. 5) Квант излучения (фотон) проявляет свойства как частицы, так и волны.Подробно: Квантовая теория излучения была использована Эйнштейном для интерпретации фотоэлектрического эффекта. Квантовая теория излучения дает возможность обосновать теорию Эйнштейна. Квантовая теория излучения (с учетом определенных предположений о перенормировке) достаточно полно описывает взаимодействие излучения с веществом. Несмотря на это, заманчиво доказать, что концептуальные основы квантовой теории излучения и понятие фотона лучше всего рассматривать через классическое поле и флуктуации, связанные с вакуумом. Однако успехи квантовой оптики выдвинули новые аргументы в пользу квантования электромагнитного поля, и вместе с ними возникло более глубокое понимание сущности фотонов. Квантовая теория излучения света существенно использует тот факт, что энергия взаимодействия между веществом (атомом, молекулой, кристаллом) и электромагнитным полем весьма мала. Это позволяет в нулевом приближении рассматривать поле и вещество независимо друг от друга и говорить о фотонах и стационарных состояниях вещества. Учет энергии взаимодействия в первом приближении обнаруживает возможность перехода вещества из одного стационарного состояния в другое. Эти переходы сопровождаются появлением или исчезновением одного фотона и представляют собой поэтому те элементарные акты, из которых слагаются процессы излучения и поглощения света веществом. Согласно квантовой теории излучения элементарный процесс фотолюминесценции следует рассматривать состоящим из акта электронного возбуждения молекул люминесцирующего вещества поглощенными фотонами и последующего излучения молекул при переходе их из возбужденного состояния в нормальное. Как показали экспериментальные исследования, элементарный процесс фотолюминесценции не всегда происходит в пределах одного излучающего центра. Для построения квантовой теории излучения оказалось необходимым учитывать взаимодействие электрона с вторично квантованным полем фотонов.
Начало развития квантовой теории излучения заряда, движущегося в электромагнитном поле плоской волны, было положено известной работой Клейна и Нишины, в которой было рассмотрено рассеяние фотона на покоящемся электроне. Планк выдвинул квантовую теорию излучения, согласно которой энергия излучается и поглощается не непрерывно, а определенными порциями - квантами, называемыми фотонами. Таким образом, квантовая теория излучения не только приводит к выводам, следующим из волновой теории, но и дополняет их новым предсказанием, нашедшим блестящее экспериментальное подтверждение. Волновой пакет с минимальной неопределенностью в различные моменты времени в потенциальном поле гармонического осциллятора (а. соответствующее электрическое поле (б. По мере развития квантовой теории излучения и с появлением лазера были в значительной мере изучены состояния поля, наиболее близко описывающие классическое электромагнитное поле. Со времени зарождения квантовой теории излучения черного тела вопрос о том, насколько хорошо уравнения Планка и Стефана - Больцмана описывают плотность энергии внутри реальных, конечных полостей, имеющих полуотражающие стенки, был предметом неоднократных обсуждений. Большинство из них имели место в первые два десятилетия нашего века, однако вопрос закрыт полностью не был, и в последние годы интерес к этой и некоторым другим родственным проблемам возродился. Среди причин возрождения интереса к этому старейшему предмету современной физики можно назвать развитие квантовой оптики, теории частичной когерентности и ее применение к изучению статистических свойств излучения; недостаточное понимание процессов теплообмена излучением между близкорасположенными телами при низких температурах и проблему эталонов далекого инфракрасного излучения, для которого длина волны не может считаться малой, а также ряд теоретических проблем, относящихся к статистической механике конечных систем. Он показал также, что в пределе больших объемов или высоких температур число Джинса справедливо для полости любой формы. Позднее на основании результатов работы Вейля были получены асимптотические приближения, где D0 (v) являлся просто первым членом ряда, полная сумма которого D (v) представляла собой среднюю плотность мод. Волна до Врой - Гося по круговой орбите, нужно, чтобы сум-ля, связанная с электро - мармя длина траектории Znr являлась кратном в гипотезе кругсшои. г г орбиты. Волны, разру - ной длине волны электрона. в противном шающиеся интерферен - случае волна будет разрушаться вследствие цией, изображены жир - интерференции (9. Условие существо-ной линией. вания устойчивой орбиты радиуса г вы. По аналогии с квантовой теорией излучения де Бройль предположил в 1924 г., что электрон и, более того, вообще всякая материальная частица одновременно обладают и волновыми и корпускулярными свойствами. Согласно де Бройлю, движущейся частице с массой т и скоростью v соответствует длина волны K h / mv, где h - постоянная Планка. В соответствии с квантовой теорией излучения энергия элементарных излучателей может изменяться только скачками, кратными некоторому значению, постоянному для данной частоты излучения. Минимальная порция энергии называется квантом энергии. Блестящее согласие между полностью квантовой теорией излучения и вещества и экспериментом, достигнутое на примере лэмбовского сдвига, обеспечило сильный довод в пользу квантования поля излучения. Однако подробный расчет лэмбовского сдвига увел бы нас далеко от главного направления квантовой оптики. Мессбауэровские переходы, наиболее удобные в экспериментальной. Эти данные подтверждают выводы квантовой теории излучения для гамма-диапазона.
Представив это краткое обоснование квантовой теории излучения, приступим к квантованию свободного электромагнитного поля. Масса покоя фотона в квантовой теории излучения считается равной нулю. Однако это лишь постулат теории, потому что ни один реальный физический эксперимент не может подтвердить этого. Остановимся кратко на основных положениях квантовой теории излучения. Если мы хотим на основе квантовой теории излучения понять действие светоделителя и его квантовые свойства, надо следовать указанному выше рецепту: сначала найти собственные моды, а затем проквантовать, как описано в предыдущей главе. Но каковы в нашем случае граничные условия, которые определяют эти моды. Во первых, необходимо расширить квантовую теорию излучения с тем, чтобы рассмотреть неквантовые стохастические эффекты, такие как тепловые флуктуации. Это является важной составляющей теории частичной когерентности. Кроме того, такие распределения делают понятной связь между классической и квантовой теориями. Книга является пособием для изучения курсов Квантовая теория излучения и Квантовая электродинамика. Принцип построения книги: изложение основ курса занимает малую часть ее объема, большая часть фактического материала приводится в форме задач с решениями, необходимый математический аппарат дан в приложениях. Все внимание сосредоточено на нерелятивистском характере излуча-тельных переходов в атомных системах. Теоретически определить AnJBnm в формуле (11.32) элементарная квантовая теория излучения черного тела не в состоянии. Эйнштейн показал, еще до развития квантовой теории излучения, что статистическое равноресие между излучением и веществом возможно только в том случае, когда наряду с вынужденным испусканием, пропорциональным плотности излучения, имеется спонтанное излучение, происходящее и в отсутствие внешнего излучения. Спонтанное излучение обусловлено взаимодействием атомной системы с нулевыми колебаниями электромагнитного поля. Эйнштейн показал, еще до развития квантовой теории излучения, что статистическое равновесие между излучением и веществом возможно только в том случае, когда наряду с вынужденным испусканием, пропорциональным плотности излучения, имеется спонтанное излучение, происходящее и в отсутствие внешнего излучения. Спонтанное излучение обусловлено взаимодействием атомной системы с нулевыми колебаниями электромагнитного поля. Штарк и Эйнштейн, исходя из квантовой теории излучения, в начале XX века дали формулировку второго закона фотохимии: каждая молекула, участвующая в фотохимической реакции, поглощает один квант излучения, который вызывает реакцию. Последнее связано с чрезвычайно малой вероятностью повторного поглощения кванта возбужденными молекулами, ввиду их низкой концентрации в веществе. Выражение для коэффициента поглощения получают на основе квантовой теории излучения. Для микроволновой области оно представляет сложную функцию, зависящую от квадрата частоты перехода, формы линии, температуры, числа молекул на нижнем энергетическом уровне и квадрата матричного элемента дипольно-го момента перехода

25 Теория излучения Эйнштейна и генерация света

Эйнштейн начинает с рассмотрения одной трудности в теории излучения черного тела. Если представить, что электромагнитные осцилляторы, которыми являются молекулы тела, подчиняются законам классической статистики Максвелла - Больцмана, то каждый такой осциллятор в среднем будет обладать энергией:


где R - постоянная Клапейрона, N - число Авогадро. Используя соотношение Планка между средней энергией осциллятора и объемной плотностью энергии, находящейся с ним в равновесном излучении:

где Eν - средняя энергия осциллятора частоты v, L - скорость света, ρ - объемная плотность энергии излучения, Эйнштейн пишет равенство:


Из него он находит объемную плотность энергии:


«Это соотношение, - пишет Эйнштейн, - найденное при условии динамического равновесия, не только противоречит опыту, но и утверждает, что в нашей картине не может быть и речи о каком-либо однозначном распределении энергии между эфиром и веществом». В самом деле, суммарная энергия излучения оказывается бесконечной:

К аналогичному выводу в том же, 1905 г. пришли независимо друг от друга Рэлей и Джине. Классическая статистика приводит к закону излучения, резко противоположному опыту. Эта трудность получила название «ультрафиолетовая катастрофа».

Эйнштейн указывает, что формула Планка:


переходит для больших длин волн и больших плотностей излучения в найденную им формулу:


Эйнштейн подчеркивает, что значение числа Авогадро совпадает со значением, найденным другим способом. Обращаясь далее к закону Вина, хорошо оправдывающегося для больших значений ν/T, Эйнштейн получает выражение энтропии излучения:

«Это равенство показывает, что энтропия монохроматического излучения достаточно малой плотности зависит от объема так же, как энтропия идеального газа или разбавленного раствора».

Переписав это выражение в виде:


и сравнивая его с законом Больцмана:

S-S0= (R/N) lnW,

Эйнштейн находит выражение вероятности того, что энергия излучения в объеме V0 сосредоточится в части объема V:

Три варианта генерации света

Принципиально различают три способа генерации света: термоизлучение, газовый разряд высокого и низкого давления.

· Термоизлучение - излучение нагреваемого провода до максимальной темпе­ ратуры при прохождении электрического тока. Образцом является солнце с температурой поверхности 6000 К. Лучше всего подходит для этого элемент вольфрам с наивысшей среди металлов температурой плавления (3683 К).

Пример: За счет термоизлучения работают лампы накаливания и галогенные лампы накаливания.

· Газовый дуговой разряд появляется в закрытой стеклянной емкости, наполненной инертными газами, парами металла и редкоземельными элементами при подаче напряжения. Возникающие при этом свечения газообразных наполнителей дают желаемую цветность света.

Пример: За счет газового дугового разряда работают ртутные, металлогалогенные и натриевые лампы.

· Люминесцентный процесс. Под действием электрического разряда закаченные в стеклянную трубку пары ртути начинают излучать невидимые ультрафиолетовые лучи, которые, попадая на нанесенный на внутреннюю поверхность стекла люминофор, преобразуется в видимый свет.

Пример: За счет люминесцентного процесса работают люминесцентные лампы, ком­пактные люминесцентные лампы.

26) СПЕКТРАЛЬНЫЙ АНАЛИЗ - совокупность методов определения элементногои молекулярного состава и строения веществ по их спектрам. С помощью С. <а. определяют как осн. компоненты, составляющие 50- 60% вещества анализируемыхобъектов, так и незначит. примеси в них (до и менее). С. а. - наиб. распространённый аналитич. метод, св. 20- 30% всеханализов выполняется с помощью этого метода, в т. ч. контроль состава сплавовв металлургии, автомоб. и авиац. пром-сти, технологии переработки руд, <анализ экологич. объектов и материалов высокой чистоты, хим., биол. и мед. <исследования. Особо важное значение С. а. имеет при поисках полезных ископаемых.

Основа С. а.- спектроскопия атомов и молекул; его классифицируютпо целям анализа и типам спектров. В атомном С. а. (АСА) определяют элементныйсостав образцов по атомным (ионным) спектрам испускания и поглощения; вмолекулярном С. а. (МСА) - молекулярный состав вещества по молекулярнымспектрам поглощения, испускания, отражения, люминесценции и комбинационногорассеяния света. Эмиссионный С. а. проводят по спектрам испусканиявозбуждённых атомов, ионов и молекул. Абсорбционный С. а. осуществляютпо спектрам поглощения анализируемых объектов. В С. а. часто сочетают неск. <спектральных методов, а также применяют др. аналитич. методы, что расширяетвозможности анализа. Для получения спектров используют разл. типы спектральныхприборов в зависимости от целей и условий анализа. Обработка эксперим. <данных может производиться на ЭВМ, встроенных в спектральный прибор. Атомный спектральный анализ Различают два осн. варианта атомногоС. а.- атомно-эмиссионный (АЭСА) и атомно-абсорбционный (ААА). Атомно-эмиссионный спектральный анализ основан на зависимости 1 =f(с) интенсивности 1 спектральной линии испускания (эмиссии)определяемого элемента х от его концентрации в анализируемом объекте: где -вероятность квантового перехода из состояния q в состояние р,n q - концентрация атомов, находящихся в состоянии q висточнике излучения (исследуемом веществе), - частота квантового перехода. Если в зоне излучения выполняется локальноетермодинамическое равновесие,концентрация электронов п e 14 -10 15 и их распределение по скоростям максвелловское, <то где n а - концентрация невозбуждённых атомов определяемогоэлемента в области излучения, g q - статистический вес состояния q,Z - статистическая сумма по состояниям q, причём энергия возбуждения уровня q. Т. о., искомая концентрация n а - ф-ция темп-ры, к-рая практически не может строго контролироваться. Поэтомуобычно измеряют интенсивность аналитич. линии относительно нек-рого внутр. <стандарта, присутствующего в анализируемом объекте в известной концентрацииn ст. Если стандартная линия близка к аналитической, то (K - постоянная величина). Эта зависимость используется в С. а. в тех случаях, <когда отсутствует самообращение используемых линий.

В АЭСА применяются в осн. спектральные приборы с фоторегистрацией(спектрографы) и фотоэлектрич. регистрацией (квантометры). Излучение исследуемогообразца направляется на входную щель прибора с помощью системы линз, попадаетна диспергирующее устройство (призма или дифракц. решётка) и после монохроматизациифокусируется системой линз в фокальной плоскости, где располагается фотопластинкаили система выходных щелей (квантометр), за к-рыми установлены фотоэлементыили фотоумножители. При фоторегистрации интенсивности линий определяютпо плотности почернения S, измеряемой микрофотометром: где р - т. н. константа Шварцшильда, - фактор контрастности; t - время экспозиции. В АЭСА исследуемое вещество должно находиться в состоянии атомного газа. <Обычно атомизация и возбуждение атомов осуществляются одновременно - висточниках света. Для анализа металлов, сплавов и др. проводников чащевсего используют дуговой разряд или искровой разряд,гдев качестве электродов служат сами анализируемые пробы. Дуговой разряд применяетсяи для анализа непроводящих веществ. В этом случае порошкообразную пробупомещают в углубление в графитовом электроде (метод испарения) или с помощьюразл. устройств вводят порошок в плазму дугового разряда между горизонтальнорасположенными графитовыми электродами. Применяется также введение порошкообразныхпроб в дуговые плазмотроны. При АЭСА растворов в качестве источников возбуждающего света применяютпламя горючих газов (смеси ацетилен - кислород, ацетилен - закись азотаи др.). В качестве источников света начали использовать также безэлектродныйразряд и особенно индуктивносвязанную плазму. Во всех случаях растворв виде аэрозоля потоком аргона вводят в зону возбуждения спектра (темп-ра2500-3000 К в пламенах и 6000- 10000 К в плазме разряда), где происходитвысушивание, испарение и атомизация аэрозоля. Процесс атомизации в методах АЭСА обычно носит термич. характер, чтопозволяет сделать нек-рые обобщения. В реальных условиях, учитывающих кинетикупроцесса, для частиц, находящихся в зоне с темп-рой ТT кип (T кип - темп-pa кипения), зависимость кол-ва испарившихсячастиц от времени описывается ур-нием: где r - радиус частицы, D - коэф. диффузии, -поверхностное натяжение раствора, р- давление насыщенных паров, М- мол. масса, - плотность. Пользуясь этим ур-нием, можно найти кол-во вещества, испарившеесяза время t.

Если при этом молекула состоит из элементов п 1 и n 2 ,то степень атомизации может быть рассчитана по ур-нию: где М 1 и M 2 - ат. массы элементов п 1 и n 2 ; Z 1 и Z 2 - статистич. <суммы по состояниям этих элементов, M МОЛ - мол. массаатомизирующейся молекулы, Z 3 - статистич. сумма по еёсостояниям, -энергия диссоциации молекулы. Такого типа расчёты позволяют найти концентрациюатомов определяемого элемента п а в ур-нии (2) и определитьеё связь с интенсивностью аналитич. линии. Необходимость учитывать взаимодействиеопределяемого элемента с окружающей средой, др. компонентами анализируемоговещества, ионизацию атомов определяемого элемента и др. эффекты значительноусложняет картину испарения и атомизации исследуемого вещества. С цельюоблегчения С. а. создаются спец. программы расчёта на ЭВМ достаточно сложныхреакций в газовой и конденсированных фазах при заданных темп-ре идавлении. В источниках излучения чаще всего не соблюдается термодинамич. равновесие, <поэтому эти расчёты могут использоваться лишь при выборе оптим. условийанализа. В АЭСА применяют эмпирич. метод, заключающийся в эксперим. построениианалитич. ф-ции с помощью серии стандартных образцов анализируемого материала с заранееточно известными содержаниями определяемого элемента. Такие образцы либоизготовляют специально, либо заранее в неск. образцах устанавливают концентрациюэтого элемента точными методами. Измеряя затем аналитич. сигнал , находят содержание определяемого элемента в пробе. Структура и физ.-хим. свойства анализируемого и стандартного объектовмогут оказаться неадекватными (различны, напр., условия парообразованиястепени атомизации, условий возбуждения). Эти различия приходится учитыватьпри С. а. В таких случаях используют метод факторного статистич. планированияэксперимента. В результате экспериментов получают т. н. ур-ния регрессии, <учитывающие влияние на интенсивность аналитич. линий концентраций всехэлементов, составляющих пробу, и устанавливают концентрацию анализируемогоэлемента с помощью этих ур-ний. Совр. многоканальные квантометры позволяютодновременно измерять интенсивность большого числа спектральных линий. <На основе этих эксперим. данных с помощью ЭВМ можно решать довольно сложныеслучаи анализа, однако за счёт измерения неск. линий случайная погрешностьопределения С. возрастает. Атомно-абсорбционный анализ (ААА) основан на зависимости аналитич. сигнала(абсорбционности) (где - интенсивности падающего и прошедшего сквозь образец света) от концентрации(Бугера- Ламберта - Берa закон): где k v - коэф. поглощения на частоте v, l - эфф. <длина светового пути в области поглощения, п - концентрация атомованализируемого элемента в парах. Схема установки ААА включает: независимый источник излучения света счастотой v, равной частоте аналитич. линии определяемого элемента; атомизатор, <преобразующий пробу в атомарный пар; спектрофотометр. Свет, прошедший сквозьатомный пар, системой линз направляется на входную щель спектрофотометра, <интенсивность аналитич. спектральной линии на выходе регистрируется фотоэлектрич. методом. Поскольку естественнаяширина спектральной линии, постоянна, зависит только от времени жизнивозбуждённого состояния и обычно пренебрежимо мала, разница контуров линиииспускания и поглощения определяется в осн. допплеровским и лоренцевским уширениями: (здесь р - давление, с - скорость света, т - атомная, М- молекулярная массы, - эфф. сечение столкновений, приводящих к уширению, К -константа).Т. о., ширины контуров линий поглощения и испускания могут быть различнымив зависимости от давления, темп-ры и состава газовой фазы в источнике излученияи в поглощающей ячейке, что отразится на виде ф-ции и может привести к неоднозначности результатов С. а. До нек-рой степениэто удаётся устранить достаточно сложными приёмами. В методе Уолша применяютлампы с полым катодом (ЛПК), к-рые излучают спектральные линии значительноболее узкие, чем линии поглощения атомов определяемых элементов в обычныхпоглощающих ячейках. В результате зависимость в довольно широких пределах значений А (0 -0,3) оказывается простойлинейной ф-цией. В качестве атомизатора в ААА используют разл. пламена на основе смесейводород - кислород, ацетилен - воздух, ацетилен - закись азота и др. Анализуподвергают аэрозоль раствора пробы, вдуваемый в горящее пламя. Последовательноизмеряют интенсивности и I 0 света, прошедшего сквозь пламя во время подачи аэрозоляи без его подачи. В совр. приборах измерение автоматизировано. В нек-рых случаях процессы испарения и последующей атомизациипробы из-за низкой темп-ры пламён (Т ~3000 К) в газовой фазе происходятне полностью. Процессы испарения частиц аэрозоля и степень атомизации впламени сильно зависят также от состава пламени (соотношения горючего иокислителя), а также от состава раствора аэрозоля. Хорошую воспроизводимостьаналитич. сигнала (в лучших случаях S r составляет 0,01-0,02)удаётся получать, применяя в качестве источников ЛПК, излучение к-рогообладает высокой стабильностью, и осуществляя процессы испарения и атомизациив пламени.

27) Естественная ширина линии излучения. Доплеровское уширение линии излучения в газообразных средах .ЕСТЕСТВЕННАЯ ШИРИНА СПЕКТРАЛЬНОЙ ЛИНИИ- ширина спектральной линии, обусловленная спонтанными квантовыми переходами изолированной квантовой системы (атома, молекулы, ядра и т. д.). Е. ш. с. л. наз. также радиац. шириной. В соответствии с принципом неопределённости возбуждённые уровни i энергии квантовой системы, обладающие конечным временем жизни t i , являются квазидискретными и имеют конечную (малую) ширину (см. Ширина уровня).Энергия возбуждённого уровня равна - суммарная вероятность всех возможных спонтанных квантовых переходов с уровня i (А ik - вероятность перехода на уровень k; см.Эйнштейна коэффициенты).Если уровень энергии j, на к-рый переходит квантовая система, также является возбуждённым, то Е. ш. с. л. равна (Г i j ). Вероятность dw ij излучения фотонов в интервале частот d w при переходе i-j определяется ф-лой: Для резонансных линий атомов и ионов Е. ш. с. л. равна: где f ij - сила осциллятора перехода i-j , она очень мала по сравнению с частотой перехода w ij : Г/w ij ~ a 3 (z+1) 2 (здесь a=1/137 - постоянная тонкой структуры, z - кратность заряда иона). Особенно малой шириной обладают запрещённые линии. Естественная ширина линии классич. осциллятора с зарядом е , массой т и собств. частотой w 0 равна: Г= 2еw 2 0 /3mс 3 . Радиац. затухание приводит также к очень небольшому смещению максимума линии в сторону меньших частот ~Г 2 /4w 0 . Спонтанные квантовые переходы, определяющие конечную ширину уровней энергии и Е. ш. с. л., не всегда происходят с испусканием фотонов. Доплеровское уширение спектральной линии. Это уширение связано с эффектом Доплера, т. е. с зависимостью наблюдаемой частоты излучения от скорости движения излучателя. Если источник, создающий в неподвижном состоянии монохроматическое излучение с частотой, движется со скоростью в сторону к наблюдателю так, что проэкция скорости на направление наблюдения составляет, то наблюдатель регистрирует более высокую частоту излучения. где с - фазовая скорость распространения волны; 0 - угол между направлениями скорости излучателя и наблюдения. В квантовых системах источниками излучения являются атомы или молекулы. В газообразной среде при термодинамическом равновесии скорости частиц распределены по закону Максвелла- Больцмана. Поэтому и форма спектральной линии всего вещества – будет связана с этим распределением. В спектре, регистрируемом наблюдателем, должен быть непрерывный набор частиц, так как разные атомы движутся с разными скоростями относительно наблюдателя. Учитывая лишь проекции скорости в распределении Максвелла- Больцмана, можно получить следующее выражение для формы доплеровской спектральной линии: Эта зависимость является гауссовой функцией. Соответствующая значению ширина линии. С увеличением массы частиц М и понижением температуры Т ширина линии уменьшается. Вследствие эффекта Доплера спектральная линия всего вещества не совпадает со спектральной линией отдельной частицы. Наблюдаемая спектральная линия вещества представляет собой суперпозицию спектральных линий всех частиц вещества, т. е. линий с различными центральными частотами. Для лёгких частиц при обычной температуре ширина доплеровской линии в оптическом диапазоне может превышать естественную ширину линии на несколько порядков и достигать значения более1ГГц. Процесс, при котором форма спектральной линии всего вещества не совпадает с формой спектральной линии каждой частицы, называют неоднородным уширением спектральной линии. В рассмотренном случае причиной неоднородного уширения был эффект Доплера. Форма доплеровской спектральной линии описывается гауссовой функцией. Если распределение скоростей частиц отличается от максвелловского, то и форма доплеровской спектральной линии будет отличаться от гауссовой функции, но уширение останется неоднородным.

28 Лазеры: принципы работы, основные характеристики и применение

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча.

Основной физический процесс, определяющий действие лазера, – это вынужденное испускание излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы).

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Лазеры нашли широкое применение, и в частности используются в промышленности для различных видов обработки материалов: металлов, бетона, стекла, тканей, кожи и т. п.

Лазерные технологические процессы можно условно разделить на два вида. Первый из них использует возможность чрезвычайно тонкой фокусировки лазерного луча и точного дозирования энергии, как в импульсном, так и в непрерывном режиме. В таких технологических процессах применяют лазеры сравнительно невысокой средней мощности: это газовые лазеры импульсно – периодического действия. С помощью последних были разработаны технология сверления тонких отверстий в рубиновых и алмазных камнях для часовой промышленности и технология изготовления фильеров для протяжки тонкой проволоки. Основная область применения маломощных импульсных лазеров связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности.

Второй вид лазерной технологии основан на применении лазеров с большой средней мощностью: от 1кВт и выше. Мощные лазеры используют в таких энергоемких технологических процессах, как резка и сварка толстых стальных листов, поверхностная закалка, направление и легирование крупногабаритных деталей, очистка зданий от поверхностных загрязненней, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электроннолучевой сварке, а это очень важно в конвейерном производстве.

Мощная лазерная технология нашла применение в машиностроении, автомобильной промышленности, промышленности строительных материалов. Она позволяет не только повысить качество обработки материалов, но и улучшить технико-экономические показатели производственных процессов.

Газовые лазеры представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме. Большие мощности необходимы для многих экспериментов при изучении нелинейных оптических свойств материалов.

Особенности газовых лазеров большей часто обусловлены тем, что они, как правило, являются источниками атомных или молекулярных спектров. Поэтому длины волн переходов точно известны, они определяются атомной структурой и обычно не зависят от условий окружающей среды.

ПОЛУПРОВОДНИКОВЫЕ ЛАЗЕРЫ - Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель (МО).

30 . Открытые оптические резонаторы. Продольные моды. Поперечные моды. Дифракционная устойчивость

В 1958 г. Прохоровым А.М. (СССР) и независимо от него Р.Дикке, А.Шавловым, Ч.Таунсом (США) была обоснована идея о возможности применения в оптическом диапазоне открытых резонаторов вместо объемных. Такие резонаторы называются открытыми оптическими или просто оптическими , L >> l

Если m = n = const, то

Полученный набор резонансных частот относится к так называемым продольным (или аксиальным) модам . Аксиальными модами называют колебания, распространяющиеся строго вдоль оптической оси резонатора. Они обладают наивысшей добротностью. Продольные моды отличаются одна от другой лишь частотой и распределением поля вдоль оси Z (т.е. разность между соседними частотами постоянна и зависит только от геометрии резонатора)

Моды с разными индексами m и n будут различаться распределением поля в плоскости, перпендикулярной к оси резонатора, т.е. в поперечном направлении.Поэтому их называют поперечными (или неаксиальными) модами . Для поперечных мод, отличающихся индексами m и n, структура поля будет различной в направлении осей x и y соответственно.

Разность частот поперечных мод с индексами m и n, отличающимися на 1, равна:

можно представить в виде:

где NF-число Френеля, .

Каждой поперечной моде соответствует бесконечное количество продольных, отличающихся индексом g.

Моды, характеризующиеся одними и теми же индексами m и n, но разными g, объединяются под общим названием поперечные моды. Колебание, соответствующее определенному g, называют продольной модой, относящейся к данной поперечной моде.

В теории открытых резонаторов принято обозначать отдельные моды как ТЕМmnq, где m, n –поперечные индексы моды, g- продольный индекс. Обозначению ТЕМ соответствует английское словосочетание Transvers Electromagnetic (Поперечные электромагнитные колебания, которые имеют пренебрежимо малые проекции векторов Е и Н на ось Z). Поскольку число g очень велико, часто индекс g опускают и моды резонатора обозначают ТЕМmn. Каждый тип поперечной моды ТЕМmn обладает определенной структурой поля в поперечном сечении резонатора и образует определенную структуру светового пятна на зеркалах резонатора (рис.1.8). В отличие от объемного резонатора моды открытого можно визуально наблюдать.

Дифракционные потери реальных мод оказываются существенно меньше благодаря тому, что при многократных проходах излучения между зеркалами происходит «естественный» отбор тех мод, у которых максимум амплитуды поля находится в центре зеркал. Таким образом, в открытом резонаторе при наличии дифракционных потерь не может существовать истинных мод, т.е. стационарных конфигураций электромагнитного поля типа стоячих волн, подобных существующим в объемном резонаторе. Однако имеется определенное число типов колебаний, обладающих малыми дифракционными потерями (их иногда называют квазимодами или модами открытых резонаторов). Поле этих колебаний (мод) сконцентрировано вблизи оси резонатора и практически спадает до нуля в его периферийных областях.

31 Модовый состав излучения лазерных генераторов. Режимы работы твердотельных лазеров

Модовой состав излучения существенно зависит от конструкции и размеров резонатора полупроводниковый лазер а также от величины мощности излучения полупроводниковый лазер испускает узкую спектральную линию, к-рая сужается с увеличением мощности излучения, если не появляются пульсации и многомодовые эффекты. Сужение линии ограничивается фазовыми флуктуациями, обусловленными спонтанным излучением. Эволюция спектра излучения с ростом мощности в инжекц. лазере показана на рис. 7. В од-ночастотном режиме наблюдают сужение спектральной линии до Гц; мин. значение ширины линии в полупроводниковый лазер со стабилизацией одночастотного режима с помощью селективного внеш. резонатора составляет величину 0,5 кГц. В полупроводниковый лазер путём модуляции накачки удаётся получить модулиров. излучение, напр. в форме синусоидальных пульсаций с частотой, достигающей в нек-рых случаях 10-20 ГГц, или в форме УК-импульсов субпикосекундной длительности Осуществлена передача информации с помощью полупроводниковый лазер. со скоростью 2-8 Гбит/с.

Твердоте́льный ла́зер - лазер, в котором в качестве активной среды используется вещество, находящееся в твёрдом состоянии (в отличие от газов в газовых лазерах и жидкостей в лазерах на красителях).

Рабочие схемы активных веществ твердотельных лазеров подразделяются на трех- и четырехуровневые. По какой из схем работает данный активный элемент, судят по разности энергий между основным и нижним рабочими уровнями. Чем больше эта разность, тем при более высоких температурах возможна эффективная генерация. Так, например, у иона Сг3+ основное состояние характеризуется двумя подуровнями, расстояние между которыми составляет 0,38 см-1. При такой разности энергий даже при температуре жидкого гелия (~4К) заселенность верхнего подуровня только на ~13°/0 меньше нижнего, т. е. они заселены одинаково и, следовательно, рубин - активное вещество с трехуровневой схемой при любой температуре. У иона неодима же нижний лазерный уровень для излучения при =1,06 мкм расположен на 2000 см-1 выше основного. Даже при комнатной температуре на нижнем уровне ионов неодима в 1,4 -104 раз меньше, чем на основном, и активные элементы, у которых в качестве активатора используется неодим, работают по четырехуровневой схеме.

Твердотельные лазеры могут работать в импульсном и непрерывном режимах. Различают два импульсных режима работы твердотельных лазеров: режим свободной генерации и режим с модулированной добротностью. В режиме свободной генерации длительность импульса излучения практически равна длительности импульса накачки. В режиме же с модулированной добротностью длительность импульса существенно меньше длительности импульса накачки.

32) Нелинейная оптика - раздел оптики, в котором исследуется совокупность оптических явлений, наблюдающихся при взаимодействии световых полей с веществом, у которого имеется нелинейная реакция вектора поляризации P на вектор напряженности электрического поля E световой волны. В большинстве веществ данная нелинейность наблюдается лишь при очень высоких интенсивностях света, достигаемых при помощи лазеров. Принято считать как взаимодействие, так и сам процесс линейными, если его вероятность пропорциональна первой степени интенсивности излучения. Если эта степень больше единицы, то как взаимодействие, так и процесс называются нелинейными. Таким образом возникли термины линейная и нелинейная оптика. Появление нелинейной оптики связано с разработкой лазеров, которые могут генерировать свет с большой напряженностью электрического поля, соизмеримой с напряженностью микроскопического поля в атомах. Основные причины, вызывающие различия в воздействии излучения большой интенсивности от излучения малой интенсивности на вещество: При большой интенсивности излучения главную роль играют многофотонные процессы, когда в элементарном акте поглощается несколько фотонов. При большой интенсивности излучения возникают эффекты самовоздействия приводящие к изменению исходных свойств вещества под влиянием излучения. Одним из наиболее часто используемых процессов с изменением частот является генерация второй гармоники . Это явление позволяет преобразовать выходное излучение лазера Nd:YAG лазера (1064 нм) или лазера на сапфире, легированного титаном (800 нм) в видимое, с длинами волн 532 нм (зеленое) или 400 нм (фиолетовое), соответственно. На практике для реализации удвоения частоты света в выходной пучок лазерного излучения устанавливают нелинейный оптический кристалл, ориентированный строго определённым образом.

33) Рассеяние света - рассеяние электромагнитных волн видимого диапазона при их взаимодействии с веществом. При этом происходит изменение пространственного распределения, частоты, поляризации оптического излучения, хотя часто под рассеянием понимается только преобразование углового распределения светового потока. Пусть и - частоты падающего и рассеянного света. Тогда Если - упругое рассеяние Если - неупругое рассеяние - стоксово рассеяние - антистоксово рассеяние Рассеиваемый свет даёт информацию о структуре и динамике материала. Рэлеевское рассеяние - когерентное рассеяние света без изменения длины волны (называемое также упругим рассеянием) на частицах, неоднородностях или других объектах, когда частота рассеиваемого света существенно меньше собственной частоты рассеивающего объекта или системы. Эквивалентная формулировка: рассеяние света на объектах, размеры которых меньше его длины волны. mодель взаимодействия с осциллятором комбинационного рассеяния света в спектре рассеянного излучения появляются спектральные линии, которых нет в спектре первичного (возбуждающего) света. Число и расположение появившихся линий определяется молекулярным строением вещества. Выражение для интенсивности излучения имеет вид где P - индуцированный дипольный момент, определяемый как Коэффициент пропорциональности α в этом уравнении называется поляризуемостью молекулы. Рассмотрим световую волну как электромагнитное поле напряженности Е с частотой колебаний ν 0 : где E 0 - амплитуда, a t - время.

§ 1. Тепловое излучение

В процессе исследования излучения нагретых тел было установлено, что любое нагретое тело излучает электромагнитные волны (свет) в широком диапазоне частот. Следовательно, тепловое излучение – это излучение электромагнитных волн за счет внутренней энергии тела.

Тепловое излучение имеет место при любой температуре. Однако при невысоких температурах излучаются практически лишь длинные (инфракрасные) электромагнитные волны.

Ведем следующие величины, характеризующие излучение и поглощение энергии телами:

    энергетическая светимость R (T ) – это энергия W, испускаемая 1 м 2 поверхности светящегося тела за 1 с.

Вт/м 2 .

    испускательная способность тела r (λ,Т) (или спектральная плотность энергетической светимости) – это энергия в единичном интервале длин волн, испускаемая 1 м 2 поверхности светящегося тела за 1 с.

.
.

Здесь
– это энергия излучения с длинами волн от λ до
.

Связь между интегральной энергетической светимостью и спектральной плотность энергетической светимости задаётся следующим соотношением:

.


.

Экспериментально было установлено, что отношение испускательной и поглощательной способностей не зависит от природы тела. Это означает, что оно является для всех тел одной и той же (универсальной) функцией длины волны (частоты) и температуры. Этот эмпирический закон открыт Кирхгофом и носит его имя.

Закон Кирхгофа: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией длины волны (частоты) и температуры:

.

Тело, которое при любой температуре полностью поглощает все падающее на него излучение, называется абсолютно черным телом а.ч.т.

Поглощательная способность абсолютно черного тела а а.ч.т. (λ,Т) равна единице. Это означает, что универсальная функция Кирхгофа
тождественна испускательной способности абсолютно черного тела
. Таким образом, для решения задачи теплового излучения необходимо было установить вид функции Кирхгофа или испускательной способности абсолютно чёрного тела.

Анализируя экспериментальные данные и применяя методы термодинамики австрийские физики Йозеф Стефан (1835 – 1893) и Людвиг Больцман (1844-1906) в 1879 году частично решили задачу излучения а.ч.т. Они получили формулу для определения энергетической светимости а.ч.т. – R ачт (T). Согласно закону Стефана-Больцмана

,
.

В
1896-м году немецкие физики во главе с Вильгельмом Вином создали суперсовременную по тем временам экспериментальную установку для исследования распределения интенсивности излучения по длинам волн (частотам) в спектре теплового излучения абсолютно черного тела. Эксперименты, выполненные на этой установке: во-первых, подтвердили результат, полученный австрийскими физиками Й.Стефаном и Л.Больцманом; во-вторых, были полученны графики распределения интенсивности теплового излучения по длинам волн. Они были удивительно похожи на полученные ранее Дж. Максвеллом кривые распределения молекул газа, находящегося в закрытом объеме, по величинам скоростей.

Теоретическое объяснение полученных графиков стало центральной проблемой конца 90-х годов 19-го века.

Английские классические физики лорд Рэлей (1842-1919) и сэр Джеймс Джинс (1877-1946) применили к тепловому излучению методы статистической физики (воспользовались классическим законом о равнораспределении энергии по степеням свободы). Рэлей и Джинс применили метод статистической физики к волнам подобно тому, как Максвелл применил его к равновесному ансамблю хаотически движущихся в замкнутой полости частиц. Они предположили, что на каждое электромагнитное колебание приходится в среднем энергия равная kT ( на электрическую энергию и на магнитную энергию),. Исходя из этих соображений, они получили следующую формулу для испускательной способности а.ч.т.:

.

Э
та формула хорошо описывала ход экспериментальной зависимости при больших длинах волн (на низких частотах). Но для малых длин волн (высокий частот или в ультрафиолетовой области спектра) классическая теория Рэлея и Джинса предсказывала бесконечный рост интенсивности излучения. Этот эффект получил название ультрафиолетовой катастрофы.

Предположив, что стоячей электромагнитной волне любой частоты соответствует одна и та же энергия, Рэлей и Джинс и при этом пренебрегли тем, что при повышении температуры вклад в излучение дают все более и более высокие частоты. Естественно, что принятая ими модель должна была привести к бесконечному росту энергии излучения на высоких частотах. Ультрафиолетовая катастрофа стала серьезным парадоксом классической физики.

С
ледующую попытку получения формулы зависимости испускательной способности а.ч.т. от длин волн предпринял Вин. С помощью методов классической термодинамики и электродинамики Вину удалось вывести соотношение, графическое изображение которого удовлетворительно совпадало с коротковолновой (высокочастотной) частью полученных в эксперименте данных, но абсолютно расходилось с результатами опытов для больших длин волн (низких частот).

.

Из этой формулы было получено соотношение, связывающее ту длину волны
, которой соответствует максимум интенсивности излучения, и абсолютную температуру тела Т (закон смещения Вина):

,
.

Это соответствовало полученным Вином экспериментальным результатам, из которых следовало, что с ростом температуры максимум интенсивности излучения смещается в сторону более коротких волн.

Но формулы, описывающей всю кривую, не было.

Тогда за решение возникшей проблемы взялся Макс Планк (1858-1947), который в это время работал в департаменте физики в Берлинском институте Кайзера Вильгельма. Планк был очень консервативным членом Прусской Академии, всецело поглощенным методами классической физики. Он был страстно увлечен термодинамикой. Практически, начиная с момента защиты диссертации в 1879-м году, и почти до конца века целых двадцать лет подряд Планк занимался изучением проблем, связанных с законами термодинамики. Планк понимал, что классическая электродинамика не может дать ответа на вопрос о том, как распределена энергия равновесного излучения по длинам волн (частотам). Возникшая проблема относилась к сфере термодинамики. Планк исследовал необратимый процесс установления равновесия между веществом и излучением (светом) . Чтобы добиться согласования теории с опытом, Планк отступил от классической теории лишь в одном пункте: он принял гипотезу о том, что излучение света происходит порциями (квантами) . Принятая Планком гипотеза позволила получить для теплового излучения такое распределение энергии по спектру, которое соответствовало эксперименту.

Пропуская излучение какого-либо тела через прибор, осуществляющий его разложение в спектр, можно судить о присутствии в излучении волн той или иной длины, а также оценивать распределение энергии по участкам спектра. Такие спектры называют спектрами испускания. При этом оказывается, что пары и газы (особенно одноатомные) при их нагревании или при электрическом разряде дают (при низких давлениях, когда взаимодействие атомов практически незаметно) линейчатые спектры, состоящие из относительно узких «линий», т. е. узких частотных интервалов, где интенсивность излучения значительна. Так, водород дает в видимой части спектра пять линий, натрий - одну (желтую) линию. При использовании спектральной аппаратуры высокого разрешения у ряда линий обнаруживается сложная структура. При увеличении давления, когда сказывается взаимодействие атомов друг с другом, а также при сложном строении молекул получаются более широкие линии, переходящие в целые относительно широкие полосы сложного строения (полосатые спектры). Такие полосатые спектры, в частности, наблюдаются у жидкостей. Наконец, твердые тела при нагревании дают практически сплошные спектры, однако распределение интенсивности по спектру у разных тел различно.

Спектральный состав излучения зависит также от температуры тел. Чем выше температура, тем (при прочих равных условиях) больше преобладают высокие частоты. Так, по мере увеличения температуры спирали лампы накаливания, при изменений протекающего по ней тока цвет спирали меняется: сначала нить слабо светится красным светом, затем видимое излучение становится более интенсивным и коротковолновым - преобладает желто-зеленая часть спектра. Но, как это выяснится в дальнейшем, и в этом случае большая часть излучаемой энергии соответствует невидимому инфракрасному диапазону.

Если излучение со сплошным спектром пропустить через слой вещества, то возникает частичное поглощение, в результате чего на сплошном спектре излучения получаются линии с минимумом интенсивности. В видимой части спектра они по контрасту кажутся темными полосами (или линиями); такие спектры называют спектрами поглощения. Так, солнечный спектр, перерезанный системой тонких темных линий (линии Фраунгофера), является спектром поглощения; оно происходит в атмосфере Солнца.

Изучение спектров показывает, что с изменением температуры тела меняется не только испускание света, но и его поглощение. При этом было обнаружено, что хорошо излучающие тела обладают и большим поглощением (Прево), а поглощенные частоты совпадают сиспускаемыми (Кирхгоф). Здесь не принимаются во внимание явления, связанные с преобразованием частоты (люминесценция, эффект Комптона, комбинационное рассеяние), обычно играющие незначительную роль.

Особый интерес у физиков XIX в. вызывало излучение нагретых тел. Дело в том, что при электрическом разряде, при некоторых химических реакциях (хемилюминесценция), при обычной люминесценции требуется непрерывная затрата энергии, за счет которой и возникает излучение, т. е. процесс является неравновесным.

Излучение же нагретого тела при определенных условиях может быть равновесным, так как излучаемая энергия может поглощаться. В XIX в. термодинамика была разработана лишь для равновесных процессов; поэтому можно было надеяться на создание лишь теории излучения нагретого тела.

Итак, представим себе тело, имеющее внутри полость с зеркальными (т. е. полностью отражающими излучение любой частоты) стенками. Пусть в эту полость помещены два произвольных тела, дающих сплошной спектр излучения; их температура сначала может быть различной. Они будут обмениваться энергией излучения до тех пор, пока не установится равновесное состояние: энергия, поглощаемая в единицу времени элементом поверхности каждого тела, будет равна энергии, излучаемой тем же элементом. При этом вся полость заполнится излучением всевозможных частот. По мысли русского физика Б. Б. Голицына, этому излучению следует приписать ту же температуру, какая установится у излучающих тел после достижения равновесного состояния.

Для количественного описания введем функцию распределения е (ν,Т), называемую лучеиспускательной способностью тела. Произведение edν , где - бесконечно малый интервал частот (около частоты ν), дает энергию, испускаемую единицей поверхности тела в единицу времени в частотном интервале (ν, ν+).

Далее назовем поглощательной способностью тела функцию а(ν,Т ), определяющую отношение энергии, поглощаемой элементом поверхности тела, к падающей на него энергии, заключенной в частотном интервале (v, ν + ).

Таким же образом можно определить и отражательную способность r (ν , Т) как отношение отражаемой энергии в интервале частот (ν, v+dν) к энергии падающей.

Идеализированные зеркальные стенки обладают отражательной способностью, равной единице во всей области частот - от самых малых до произвольно больших.

Допустим, что наступило состояние равновесия, при этом первое тело в единицу времени излучает с каждой единицы поверхности мощность

Если на эту единичную поверхность приходит из полости излучение, Описываемое функцией Ɛ(v, T ) dv , то часть энергии, определяемая произведением a 1 (v,T ) Ɛ(v , T ) dv , будет поглощена, остальное излучение отразится. В то же время единицей поверхности второго тела излучается мощность e 2 (v , T ) dv , а поглощается a 2 (v , T )Ɛ(v , T ) dv .

Отсюда следует, что при равновесии выполняется условие:

Его можно представить в виде

(11.1)

Эта запись подчеркивает, что отношение лучеиспускательной способности любого тела к его поглощательной способности при данной температуре в некотором узком интервале частот есть величина постоянная для всех тел. Эта постоянная величина равна лучеиспускательной способности так называемого черного тела (т. е. тела с поглощательной способностью, равной единице во всей мыслимой области частот).

Этим черным телом оказывается рассматриваемая нами полость. Поэтому, если сделать в стенке тела с полостью весьма малое отверстие, заметно не нарушающее теплового равновесия, то слабый поток излучения из этого отверстия будет характерен для излучения черного тела. В то же время ясно, что излучение, попадающее через такое отверстие внутрь полости, имеет ничтожно малую вероятность выйти обратно, т. е. полость обладает-полным поглощением, как это и должно быть у черного тела. Можно показать, что наши рассуждения сохраняют справедливость и при замене зеркальных стенок стенками с меньшей отражательной способностью; вместо двух тел можно взять несколько или одно или просто рассматривать излучение стенок самой полости (если они не зеркальны). Закон, выражаемый формулой (11.1), называют законом Кирхгофа. Из закона Кирхгофа следует, что если бы была известна функция Ɛ(v, Т), характеризующая излучение черного тела, то излучение любого другого тела можно было бы определить, измерив его поглощательную способность.

Отметим, что небольшое отверстие в стенке, например, муфельной печи при комнатной температуре кажется черным, так как, поглощая все попадающее-в полость излучение, полость почти не излучает, будучи холодной. Но при нагреве стенок печи отверстие кажется яркосветящимся, так как поток «черного» излучения, выходящий из него при высокой температуре (900 К и выше), достаточно интенсивен. По мере роста температуры интенсивность растет и красное вначале излучение воспринимается желтым, а затем - белым.

Если в полости имеется, например, чашка из белого фарфора с темным узором, то внутри горячей печи узор не будет заметен, так как его собственное излучение вместе с отраженным совпадает по составу с излучением, заполняющим полость. Если быстро вынести чашку наружу, в светлую комнату, то сначала темный узор светится ярче белого фона. После охлаждения, когда собственное излучение чашки становится исчезающе малым, в свете, заполняющем комнату, снова получается темный узор на белом фоне.

В конце XIX -- начале XX в. открыты В. Рентгеном - X-лучи (рентгеновские лучи), А. Беккерелем - явление радиоактивности, Дж. Томсоном -электрон. Однако классическая физика не сумела объяснить эти явления.

Теория относительности А. Эйнштейна потребовала коренного пересмотра понятии пространства и времени. Специальные опыты подтвердили справедливость гипотезы Дж. Максвелла об электромагнитной природе света. Можно было предположить, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но это предположение нужно было подтвердить сопоставлением теоретических и экспериментальных данных.

Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела , т. е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

Австрийские физики И. Стефан и Л. Больцман экспериментально установили, что полная энергия Е, излучаемая за 1 с абсолютно черным телом с единицы поверхности, пропорциональна четвертой степени абсолютный температуры Т:

Где s = 5,67 . 10 -8 Дж/(м 2. К-с)-постоянная Стефана-Больцмана.

Этот закон был назван законом Стефана - Больцмана. Он позволил вычислить энергию излучения абсолютно черного тела по известной температуре.

Гипотеза Планка

Стремясь преодолеть затруднения классической теории при объяснении излучения черного тела, М. Планк в 1900 г. высказал гипотезу: атомы испускают электромагнитную энергию от дельными порциями -квантами . Энергия Е

где h=6,63 . 10 -34 Дж . с-постоянная Планка.

Иногда удобно измерять энергию и постоянную Планка вэлектронвольтах.

Тогда h=4,136 . 10 -15 эВ . с . В атомной физике употребляется также величина

(1 эВ - энергия, которую приобретает элементарный заряд, проходя ускоряющую разность потенциалов 1 В. 1 эВ=1,6 . 10 -19 Дж).

Таким образом, М. Планк указал путь выхода из трудностей, с которыми столкнулась теория теплового излучения, после чего начала развиваться современная физическая теория, называемая квантовой физикой.

Фотоэффект

Фотоэффектом называется испускание электронов с поверхности металла под действием света.В 1888 г. Г. Герц обнаружил, что при облучении ультрафиолетовыми лучами электродов, находящихся под высоким напряжением, разряд возникает при большем расстоянии между электродами, чем без облучения.

Фотоэффект можно наблюдать в следующих случаях:

1. Цинковую пластину, соединенную с электроскопом, заряжают отрицательно и облучают ультрафиолетовым светом. Она быстро разряжается. Если же ее зарядить положительно, то заряд пластины не изменится.

2. Ультрафиолетовые лучи, проходящие через сетчатый положительныйэлектрод, попадают на отрицательно заряженную цинковую пластину и выбивают из нее электроны, которые устремляются к сетке, создавая фототек, регистрируемый чувствительным гальванометром.

Законы фотоэффекта

Количественные закономерности фотоэффекта (1888-1889) были установлены А. Г. Столетовым.

Он использовал вакуумный стеклянный баллон с двумя электродами. Через кварцевое стекло на катод попадает свет (в том числе ультрафиолетовое излучение). С помощью потенциометра можно регулировать напряжение между электродами. Ток в цепи измерялся миллиамперметром.

В результате облучения электроны, выбитые из электрода, могут достигнуть противоположного электрода и создать некоторый начальный ток. При увеличении напряжения, поле разгоняет электроны, и ток увеличивается, достигая насыщения, при котором все выбитые электроны достигают анода.

Если приложить обратное напряжение, то электроны тормозятся и ток уменьшается. При так называемом запирающем напряжении фототок прекращается. Согласно закону сохранения энергии, где m- масса электрона, а υ max - максимальная скорость фотоэлектрона.

Первый закон

Исследуя зависимость силы тока в баллоне от напряжения между электродами при постоянном световом потоке на один из них, он установил первый закон фотоэффекта.

Фототок насыщения пропорционален световому потоку, падающему на металл .

Т.к. сила тока определяется величиной заряда, а световой поток - энергией светового пучка, то можно сказать:

ч исло электронов, выбиваемых за 1 с из вещества, пропорционально интенсивности света, падающего на это вещество.

Второй закон

Изменяя условия освещения на этой же установке, А. Г. Столетов открыл второй закон фотоэффекта: кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит от его частоты.

Из опыта следовало, что если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, а, следовательно, увеличивается и кинетическая энергия фотоэлектронов. Таким образом, кинетическая энергия фотоэлектронов линейно возрастает с частотой света.

Третий закон

Заменяя в приборе материал фотокатода, Столетов установил третий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. е. существует наименьшая частота n min , при которой еще возможен фотоэффект .

При n < n min ни при какой интенсивности волны падающего на фотокатод света фотоэффект не произойдет. Т.к. , томинимальной частоте света соответствует максимальная длина волны .

Поток излучения Ф  физическая величина, равная количест­ву энергии, излучаемой нагретым телом со всей поверхности в еди­ницу времени :

Энергетическая светимость (излучательность) тела R  энергия, излучаемая в единицу времени с единицы площади нагрето­го тела во всем интервале длин волн (0 < < ∞).:

Спектральная плотность энергетической светимости R  , T это энергия, излучаемая в интервале длин волн от  до +d в единицу времени с единицы площади

Энергетическая светимость R T , являющаяся интегральной характеристикой излучения, связана со спектральной плотностью энергетической светимости соотношением

Так как длина волны и частота связаны известным соотношением  = c /, спектральные характеристики излучения можно характеризовать также и частотой.

Радиационные характеристики тел

Рис. 3. Модель абсо­лютно черного тела

;  абсолютно белое тело,

;  абсолютно черное тело.

Коэффициент поглощения зависит от длины волны и ха­рактеризуется спектральной поглощательной способ­нос­тью  безразмерной физической величиной, показывающей, какая доля энер­гии, падающей в единицу времени на единицу поверхности тела в интервале длин волн от  до + d, им поглощается:

Тело, для которого поглощательная способность одинакова для всех длин волн и зависит только от температуры, называют серым:

2. Законы теплового излучения

2.1. Между спектральной плотностью энергетической светимости и поглощательной способностью любого тела имеется связь, которая выража­ется законом Кирхгофа :

Отношение спектральной плотности энергетической светимости любого тела к его поглощательной способности при дан­ной длине волны и температуре является величиной постоянной для всех тел и равной спектральной плотности энергетической светимо­сти абсолютно черного тела r  , T при той же температуре и дли­не волны.

Здесь r  , T универсальная функция Кирхгофа , при А  , Т = 1 , т.е.универсальная фун­к­ция Кирхгофа есть не что иное, как с пектральная плотность энер­ге­ти­ческой светимости абсолютно чер­но­го тела.

Следствия закона Кирхгофа:

Так как А  , Т < 1, то: энергия излучения любо­го тела всегда меньше энергии излу­че­ния абсолютно черного тела;

Если тело не поглощает энер­гию в некотором диапазоне длин волн (А  , Т = 0), то оно и не из­лучает ее в этом диапазоне ().

Интегральная энергетическая светимость

Для серого тела

т.е. коэффициент поглощения характеризует отношение излучательностей серого и черного тел . В технической литературе его называют степенью черноты серого тела.

2.2. Закон Стефана-Больцмана установлен Д.Стефаном (1879 г.) из анализа экспериментальных данных, а за­тем Л.Больцманом (1884 г.)  теоретическим путем.

 = 5,6710 -8 Вт/(м 2  К 4)  постоянная Стефана-Больцмана,

т.е. энергетическая светимость абсолютно черного тела пропорциональна его абсолютной температуре в четвертой степени.

закон Стефана-Больцмана для серого тела

Закон смещения Вина установлен немецким физиком В.Вином (1893 г.)

, b = 2,910 -3 мK  постоянная Вина. (10)

Длина волны, на которую приходится максимум спектральной плотности энергетической светимости абсо­лютно черного тела, обратно пропорциональна абсолютной темпера­туре этого тела, т.е. с увеличением температуры максимальное выделение энергии смещается в коротковолновый диапазон.

Для продолжения скачивания необходимо собрать картинку:

Тепловое излучение

Тепловое излучение - это электромагнитное излучение, которое возникает за счет энергии вращательного и колебательного движения атомов и молекул в составе вещества. Тепловое излучение характерно для всех тел, которые имеют температуру, превышающую температуру абсолютного нуля.

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн. Впервые такое излучение было открыто английским астрономом Вильямом Гершелем. В 1865 английский физик Дж. Максвелл доказал, что ИК - излучение имеет электромагнитную природу и представляет собой волны длиной от 760нм до 1-2мм. Чаще всего весь диапазон ИК - излучения делят на области: ближнюю (750нм-2.500нм), среднюю (2.500нм – 50.000нм) и дальнюю (50.000нм-2.000.000нм).

Рассмотрим случай, когда тело А расположено в полости Б, которая ограничена идеальной отражающей (непроницаемой для излучения) оболочкой С (рис.1). В результате многократного отражения от внутренней поверхности оболочки излучение будет сохраняться в пределах зеркальной полости и частично поглощаться телом А. При таких условиях система полость Б – тело А не будет терять энергию, а будет лишь происходить непрерывный обмен энергией между телом А и излучением, которое заполняет полость Б.

Равновесное тепловое излучение имеет такие свойства: однородное (одинаковая плотность потока энергии во всех точках полости), изотропное (возможные направления распространения равновероятны), неполяризованное (направления и значения векторов напряженностей электрического и магнитного полей во всех точках полости изменяются хаотически).

Основными количественными характеристиками теплового излучения являются:

Энергетическая светимость - это количество энергии электромагнитного излучения во всем диапазоне длин волн теплового излучения, которое излучается телом во всех направлениях с единицы площади поверхности за единицу времени: R = E/(S·t), [Дж/(м2с)] = [Вт/м2] Энергетическая светимость зависит от природы тела, температуры тела, состояния поверхности тела и длины волны излучения.

Спектральная плотность энергетической светимости - энергетическая светимость тела для данных длин волн (λ + dλ) при данной температуре (T + dT): Rλ, T = f(λ, T).

Энергетическая светимость тела в пределах каких-то длин волн вычисляется интегрированием Rλ, T = f(λ, T) для T = const:

Коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФпад, то одна его часть отражается от поверхности тела - dФотр, другая часть проходит в тело и частично превращается в теплоту dФпогл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФпр: α = dФпогл/dФпад.

Монохроматический коэффициент поглощения - коэффициент поглощения теплового излучения данной длины волны при заданной температуре: αλ, T = f(λ, T)

Среди тел есть такие тела, которые могут поглощать все тепловое излучение любых длин волн, которое падает на них. Такие идеально поглощающие тела называются абсолютно черными телами. Для них α =1.

Есть также серые тела, для которых α<1, но одинаковый для всех длин волн инфракрасного диапазона.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0, 1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

Следствия из закона Кирхгофа:

Систематическое изучение спектров ряда элементов позволило Кирхгофу и Бунзену установить однозначную связь между спектрами поглощения и излучения газов и индивидуальностью соответствующих атомов. Так был предложен спектральный анализ, с помощью которого можно выявить вещества, концентрация которых составляет 0, 1нм.

Распределение спектральной плотности энергетической светимости для абсолютно черного тела, серого тела, произвольного тела. Последняя кривая имеет несколько максимумов и минимумов, что указывает на избирательность излучения и поглощения таких тел.

2. Закон Стефана-Больцмана.

Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λmax, на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λmax = в/t, где в = 2, 9*10-3 м·К- постоянная Вина.

Таким образом, при увеличении температуры изменяется не только полная энергия излучения, но и сама форма кривой распределения спектральной плотности энергетической светимости. Максимум спектральной плотности при увеличении температуры смещается в сторону более коротких длин волн. Поэтому закон Вина называют законом смещения.

Закон Вина применяется в оптической пирометрии - метода определения температуры по спектру излучения сильно нагретых тел, которые отдалены от наблюдателя. Именно этим методом впервые была определена температура Солнца (для 470нм Т=6160К).

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6, 63*10-34 Дж·с постоянная Планка.

Тепловое излучение и его характеристики

Тепловое излучение – это электромагнитное излучение тел, возникающее за счет изменения их внутренней энергии (энергии теплового движения атомов и молекул).

Тепловое излучение тела человека относится к инфракрасному диапазону электромагнитных волн.

Инфракрасные лучи занимают диапазон электромагнитных волн с длиной волны от 760 нм до 1-2 мм.

Источник теплового излучения : любое тело, температура которого превышает температуру абсолютного нуля.

Поток излучения (Ф) – количество энергии, которое излучается (поглощается) с выбранной площади (поверхности) по всем направлениям за единицу времени.

2. Интегральная излучательная способность (R)– поток излучения с единицы площади поверхности.

3. Спектральная излучательная способность () – интегральная излучательная способность, относимая к единице спектрального интервала

где интегральная излучательная способность;

– ширина интервала длин волн ().

4. Интегральная поглощательная способность (коэффициент поглощения) –отношение поглощенной телом энергии к падающей энергии.

– поток излучения, который поглощается телом;

– поток излучения, что падает на тело.

5. Спектральная поглощательная способность – коэффициент поглощения, относимый к единичному спектральному интервалу:

Абсолютно черное тело. Серые тела

Абсолютно черное тело – это тело, которое поглощает всю падающую энергию.

Коэффициент поглощения абсолютно черного тела и не зависит от длины волны.

Примеры абсолютно черного тела: сажа, черный бархат.

Серые тела – тела, у которых.

Пример: тело человека считают серым телом.

Черные и серые тела – это физическая абстракция.

Законы теплового излучения

1. Закон Кирхгофа (1859 г.): Отношение спектральной излучательной способности тел к их спектральной поглощательной способности не зависит от природы излучающего тела и равно спектральной излучательной способности абсолютно черного тела при данной температуре:

где – спектральная излучательная способность абсолютно черного тела.

Тепловое излучение является равновесным – сколько энергии излучается телом, столько ее им и поглощается.

Рис. 41. Кривые распределения энергии в спектрах теплового излучения

различных тел (1 – абсолютно черное тело, 2 – серое тело,

3 – произвольное тело)

2. Закон Стефана – Больцмана (1879, 1884): интегральная излучательная способность абсолютно черного тела () прямо пропорциональна четвертой степени его термодинамической температуры (Т).

где –постоянная Стефана – Больцмана

3. Закон Вина (1893):длина волны, на которую приходится максимум спектральной излучательной способности данного тела, обратно пропорциональна температуре.

Где = – постоянная Вина.

Рис. 42. Спектры теплового излучения абсолютно черного тела при различных температурах

Тепловое излучение тела человека

Тело человека имеет постоянную температуру благодаря терморегуляции. Основной частью терморегуляции является теплообмен организма с окружающей средой.

Теплообмен происходит с помощью таких процессов:

а) теплопроводность (0 %), б) конвекция (20 %), в) излучение (50 %), г) испарение (30 %).

Диапазон теплового излучения тела человека

Температура поверхности кожи человека: .

Длина волны соответствует инфракрасному диапазону, потому не воспринимается глазом человека.

Излучательная способность тела человека

Тело человека считается серым телом, так как частично излучает энергию () и поглощает излучение из окружающей среды ().

Энергия (), которую теряет человек за 1 секунду с 1 своего тела вследствие излучения составляет:

где температура окружающей среды: , температура тела человека: .

Контактные методы определения температуры

Термометры: ртутные, спиртовые.

Шкала Цельсия: t°C

Шкала Кельвина: T = 273 + t°C

Термография – это метод определения температуры участка тела человека дистанционно путем оценки интенсивности теплового излучения.

Приборы: термограф или тепловизор (регистрирует распределение температур на выбранном участке человека).

Лекция №16. Тепловое излучение

1. Понятие теплового излучения и его характеристики

Итак, что такое тепловое излучение?

Рис.1. Многократное отражение тепловых волн от зеркальных стенок полости Б

Если распределение энергии остается неизменным для каждой длины волны, то состояние такой системы будет равновесным, а излучение также будет равновесным. Единственным видом равновесного излучения является тепловое. Если по какой-то причине равновесие между излучением и телом сместится, то начинают протекать такие термодинамические процессы, которые вернут систему в состояние равновесия. Если тело А начинает излучать больше, чем поглощает, то тело начинает терять внутреннюю энергию и температура тела (как мера внутренней энергии) начнет падать, что уменьшит количество излучаемой энергии. Температура тела будет падать до тех пор, пока количество излучаемой энергии не станет равным количеству энергии, поглощаемой телом. Таким образом, наступит равновесное состояние.

Коэффициент поглощения - отношение поглощенной телом энергии к падающей энергии. Так, если на тело падает излучение потока dФ пад, то одна его часть отражается от поверхности тела - dФ отр, другая часть проходит в тело и частично превращается в теплоту dФ погл, а третья часть после нескольких внутренних отражений - проходит через тело наружу dФ пр: α = dФ погл /dФ пад.

Коэффициент поглощения α зависит от природы поглощающего тела, длины волны поглощаемого излучения, температуры и состояния поверхности тела.

Моделью АЧТ является малое отверстие полости с теплонепроницаемой оболочкой. Диаметр отверстия составляет не более 0,1 диаметра полости. При постоянной температуре из отверстия излучается некоторая энергия, соответствующая энергетической светимости абсолютно черного тела. Но АЧТ - это идеализация. Но законы теплового излучения АЧТ помогают приблизиться к реальным закономерностям.

2. Законы теплового излучения

1. Закон Кирхгофа. Тепловое излучение является равновесным - сколько энергии излучается телом, столь ее им и поглощается. Для трех тел, находящихся в замкнутой полости можно записать:

Указанное соотношение будет верным и тогда, когда одно из тел будет АЧ:

Это закон Кирхгофа: отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения (при определенной температуре и для определенной длины волны) не зависит от природы тела и равно для всех тел спектральной плотности энергетической светимости при тех же самых температуре и длине волны.

1. Спектральная энергетическая светимость АЧТ является универсальной функцией длины волны и температуры тела.

2. Спектральная энергетическая светимость АЧТ наибольшая.

3. Спектральная энергетическая светимость произвольного тела равна произведению его коэффициента поглощения на спектральную энергетическую светимость абсолютно черного тела.

4. Любое тело при данной температуре излучает волны той же длины волны, которое оно излучает при данной температуре.

В 1879 году австрийские ученые Йозеф Стефан (экспериментально для произвольного тела) и Людвиг Больцман (теоретически для АЧТ) установили, что общая энергетическая светимость во всем диапазоне длин волн пропорциональна четвертой степени абсолютной температуры тела:

Немецкий физик Вильгельм Вин в 1893 году сформулировал закон, который определяет положение максимума спектральной плотности энергетической светимости тела в спектре излучения АЧТ в зависимости от температуры. Согласно закону, длина волны λ max , на которую приходится максимум спектральной плотности энергетической светимости АЧТ, обратно пропорционален его абсолютной температуре Т: λ max = в/t, где в = 2,9*10 -3 м·К- постоянная Вина.

Представленные законы не позволяли теоретически найти уравнения распределения спектральной плотности энергетической светимости по длинам волн. Труды Релея и Джинса, в которых ученые исследовали спектральный состав излучения АЧТ на основе законов классической физики, привели к принципиальным трудностям, названных ультрафиолетовой катастрофой. В диапазоне УФ-волн энергетическая светимость АЧТ должна была достигать бесконечности, хотя в опытах она уменьшалась к нулю. Эти результаты противоречили закону сохранения энергии.

4. Теория Планка. Немецкий ученый в 1900 году выдвинул гипотезу о том, что тела излучают не непрерывно, а отдельными порциями - квантами. Энергия кванта пропорциональна частоте излучения: E = hν = h·c/λ , где h = 6,63*Дж·с постоянная Планка.

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде – кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К, что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм. Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0,1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда).

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Многие копании в последнее время признают тот факт, что «достучаться» до потенциального клиента, порой, достаточно сложно, его информационное поле настолько загружено различного рода рекламными сообщениями, что таковые просто перестают восприниматься.

Активные продажи по телефону становятся одним из наиболее эффективных способов увеличения продаж в короткие сроки. Холодные звонки направлены на привлечение клиентов, которые ранее не обращались за товаром или услугой, но по ряду факторов являются потенциальными клиентами. Набрав телефонный номер, менеджер активных продаж должен четко осознавать цель холодного звонка. Ведь телефонные переговоры требуют от sales manager особого мастерства и терпения, а так же знание техники и методики ведения переговоров.

Характеристики теплового излучения

Основные вопросы темы:

1. Характеристики теплового излучения.

2. Законы теплового излучения (закон Кирхгофа, закон Стефана-Больцмана, закон Вина); формула Планка.

3. Физические основы термографии (тепловидения).

4. Теплоотдача организма.

Любое тело при температурах выше абсолютного нуля (0 К) является источником электромагнитного излучения, которое называют тепловым излучением. Оно возникает за счет внутренней энергии тела.

Диапазон длин электромагнитных волн (спектральный диапазон), излучаемых нагретым телом, очень широк. В теории теплового излучения часто считают, что здесь длина волны меняется от 0 до ¥.

Распределение энергии теплового излучения тела по длинам волн зависит о его температуры. При комнатной температуре почти вся энергия сосредоточена в инфракрасной области шкалы электромагнитных волн. При высокой температуре (1000°C) значительная часть энергии испускается и в видимом диапазоне.

Характеристики теплового излучения

1. Поток (мощность) излучения Ф (иногда обозначается буквой Р ) – энергия, излучаемая за 1 сек со всей поверхности нагретого тела по всем направлениям в пространстве и во всем спектральном диапазоне:

2. Энергетическая светимость R – энергия, излучаемая за 1 сек с 1 м 2 поверхности тела по всем направлениям пространстве и во всем спектральном диапазоне. Если S – площадь поверхности тела, то

3. Спектральная плотность энергетической светимости r λ - энергия, излучаемая за 1 сек с 1м 2 поверхности тела по всем направлениям на длине волны λ в единичном спектральном диапазоне , →

Зависимость r l от l называют спектром теплового излучения тела при данной температуре (при Т = const). Спектр дает распределение излучаемой телом энергии по длинам волн. Он показан на рис. 1.

Можно показать, что энергетическая светимость R равна площади фигуры, ограниченной спектром и осью (рис. 1).

4. Способность нагретого тела поглощать энергию внешнего излучения определяется монохроматическим коэффициентом поглощения а l ,

т.е. а l равноотношению потока излучения с длиной волны l, поглощенного телом, к потоку излучения той же длины волны, упавшему на тело. Из (3.) следует, что а l – величина безразмерная и.

По типу зависимости а от l все тела делятся на 3 группы:

а = 1 на всех длинах волн при любых температурах (рис. 3, 1 ), т.е. абсолютно черное тело полностью поглощает все падающее на него излучение. “Абсолютно черных” тел в природе нет, моделью такого тела может являться замкнутая непрозрачная полость с маленьким отверстием (рис. 2). Луч, попавший в это отверстие, после многократных отражений от стенок будет практически полностью поглощен.

К абсолютно черному телу близко солнце, его Т = 6000 К.

2). Серые тела : их коэффициент поглощения а < 1 и одинаков на всех длинах волн при любых температурах (рис. 3, 2 ). Например, серым телом можно считать тело человека в задачах теплообмена с окружающей средой.

для них коэффициент поглощения а < 1 и зависит от длины волны, т.е. а l = f (l ), эта зависимость представляет собой спектр поглощения тела (рис. 3 , 3 ).

Тепловое излучение длина волны

Законы теплового излучения. Лучистое тепло.

Может, для кого-то это будет новостью, но передача температуры происходит не только теплопроводностью через прикосновение одного тела к другому. Каждое тело (Твердое, жидкое и газообразное) испускает тепловые лучи определенной волны. Эти лучи, уходя от одного тела, поглощаются другим телом, и принимают тепло на себя. И я попытаюсь Вам объяснить, как это происходит, и сколько тепла мы теряем этим излучением у себя дома на отопление. (Я думаю, многим будет интересно увидеть эти цифры). В конце статьи решим задачку из реального примера.

Я не однократно в этом убеждался, что сидя у костра (обычно большого) мое лицо обжигали эти лучи. И если я закрывал костер своими ладонями и при этом руки были вытянуты, то получалось, что мое лицо переставало обжигать. Не трудно догадаться, что эти лучи прямые как световые. Меня обжигает не воздух, циркулирующий вокруг костра, и даже не теплопроводность воздуха, а именно прямые не видимые тепловые лучи, идущие от костра.

В космосе между планетами обычно вакуум и поэтому передача температур осуществляется исключительно тепловыми лучами (Все лучи - это электромагнитные волны).

Тепловое излучение имеет природу такую, как световые и электромагнитные лучи (волны). Просто, эти волны (лучи) имеют разную длину волны.

Например, длины волн в диапазоне 0,76 – 50 мкм, называется инфракрасными. Все тела, имеющие комнатную температуру + 20 °С, излучают в основном инфракрасные волны с длинами волн, близкими к 10 мкм.

Всякое тело, если только температура его отлична от абсолютного нуля (-273,15 °С), способно посылать в окружающее пространство излучение. Поэтому любое тело излучает на окружающие его тела лучи и в свою очередь находится под воздействием излучения этих тел.

Тепловое излучение может поглощаться или проходить в сквозь тело, а также может просто отражаться от тела. Отражение тепловых лучей подобно тому, как если бы световой луч отражался от зеркала. Поглощение теплового излучения подобно тому, как черная крыша сильно нагревается от солнечных лучей. А проникновение или прохождение лучей подобно тому, как лучи проходят в сквозь стекло или воздух. Наиболее распространенным в природе видом электромагнитного излучения является тепловое излучение.

Очень близко по своим свойствам к черному телу относится так называемое реликтовое излучение, или космический микроволновой фон - заполняющее Вселенную излучение с температурой около 3 К.

Вообще в науке теплотехнике, чтобы объяснить процессы тепловых излучений, удобно использовать понятие черного тела, для того чтобы качественно объяснить процессы тепловых излучений. Только черное тело способно в некотором роде облегчить расчеты.

Как было описано выше любое тело способно:

2. Поглощать тепловую энергию.

3. Отражать тепловую энергию.

Черное тело - это тело, которое полностью поглощает тепловую энергию, то есть оно не отражает лучи и в сквозь нее не проходит тепловое излучение. Но не забываем, что черное тело излучает тепловую энергию.

Какие возникают сложности при расчете, если тело не является черным телом?

Тело, которое не является черным телом, имеет такие факторы:

2. Отражает, какую-то часть теплового излучения.

Эти два фактора усложняют расчет на столько, что «мама не горюй». Очень сложно так считать. А ученые по этому поводу толком не объяснили, как рассчитать серое тело. Кстати серое тело - это и есть тело, которое не является черным телом.

Тепловое излучение имеет разные частоты (разные волны), и каждое отдельное тело может иметь разную волну излучения. К тому же при изменении температуры, эта длина волны может меняться, может меняться и ее интенсивность (сила излучения).

Рассмотрим изображение, которое подтверждает сложность вычисления излучательности.

На рисунке изображены два шарика, которые в себе имеют частички этого шарика. Красные стрелки это лучи испускаемые частичками.

Рассмотрим черное тело.

Внутри черного тела глубоко внутри расположены некоторые частички, которые обозначены оранжевым цветом. Они испускают лучи, которые поглощают рядом находящиеся другие частички, которые обозначены желтым цветом. Лучи оранжевых частичек черного тела не способны пройти в сквозь другие частички. И поэтому только наружные частички этого шарика испускают лучи по всей площади шарика. Поэтому расчет черного тела легко считается. Также принято считать, что черное тело испускает весь спектр волн. То есть испускает все имеющиеся волны различных длин. Серое тело может испускать часть спектра волн, только определенной длины волн.

Рассмотрим серое тело.

Внутри серого тела, имеющиеся внутри частички излучают какую то часть лучей, которые проходят в сквозь другие частички. И только поэтому расчет усложняется многократно.

Тепловое излучение - это электромагнитное излучение, возникающее вследствие преобразования энергии теплового движения частиц тела в энергию излучения. Именно тепловой характер возбуждения элементарных излучателей (атомов, молекул и т.п.) противопоставляет тепловое излучение всем другим видам свечения и обуславливает его специфическое свойство зависеть лишь от температуры и оптических характеристик излучающего тела.

Опыт показывает, что тепловое излучение наблюдается у всех тел при любой температуре, отличной от 0 К. Конечно, интенсивность и характер излучения зависят от температуры излучающего тела. Например, все тела, имеющие комнатную температуру + 20 °С, излучают в основном инфракрасные волны с длинами волн, близкими к 10 мкм, а Солнце излучает энергию, максимум которой приходится на 0,5 мкм, что соответствует видимому диапазону. При Т → 0 К тела практически не излучают.

Тепловое излучение ведет к уменьшению внутренней энергии тела и, следовательно, к снижению температуры тела, к охлаждению. Нагретое тело за счет теплового излучения отдает внутреннюю энергию и охлаждается до температуры окружающих тел. В свою очередь, поглощая излучение, могут нагреваться холодные тела. Такие процессы, которые могут происходить и в вакууме, называют радиационным теплообменом.

Абсолютно черное тело - физическая абстракция, применяемая в термодинамике, тело, поглощающее все падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно черное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно черного тела определяется только его температурой.

(Температурный интервал в Кельвинах и их Цвет)

до 1000 Красный

5500-7000 Чисто белый

Наиболее черные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (т. е. имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Глубокий черный цвет некоторых материалов (древесного угля, черного бархата) и зрачка человеческого глаза объясняется тем же механизмом. Среди тел Солнечной системы свойствами абсолютно черного тела в наибольшей степени обладает Солнце. По определению Солнце практически не отражает никакого излучения. Термин был введен Густавом Кирхгофом в 1862.

По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 K, поэтому Солнце светит почти белым светом, но из-за поглощения части спектра атмосферой Земли у поверхности нашей планеты этот свет приобретает жёлтый оттенок.

Абсолютно чёрное тела - 100% поглощает и при этом нагревается, так и наоборот! нагретое тело - 100% излучает это означает, что есть строгая закономерность (формула излучения абсолютно чёрного тела) между температурой Солнца - и его спектром - так как и спектр и температуру уже определили - да, у Солнца нет отклонений от этих параметров!

В астрономии есть такая диаграмма - «Спектр-Светимость», так вот наше Солнце принадлежит «главной последовательности» звезд, к которой принадлежат и большинство других звезд, то есть почти все звезды «абсолютно чёрные тела», как это не странно. Исключения - белые карлики, красные гиганты и Новые, Сверх-Новые.

Это кто-то физику в школе недоучил.

Абсолютно чёрное тело поглощает ВСЁ излучение и излучает больше всех остальных тел (чем больше тело поглощает, тем сильнее оно нагревается; чем больше оно нагревается, тем больше оно излучает).

Пусть у нас есть две поверхности - серая (с коэффициентом черноты 0,5) и абсолютно чёрная (коэффициент 1).

Коэффициент черноты - это коэффициент поглощения.

Теперь на эти поверхности направив одинаковый поток фотонов, допустим, 100 штук.

Серая поверхность поглотит 50 из них, чёрная - все 100.

Какая поверхность, испускает больше света - в которой «сидит» 50 фотонов или 100?

Излучение абсолютно чёрного тела впервые правильно рассчитал Планк.

Излучение Солнца примерно подчиняется формуле Планка.

И так начнем изучать теорию.

Под излучением (радиацией) понимают испускание и распространение электромагнитных волн любого вида. В зависимости от длины волны различают: Ренгеновские, ультрафиолетовые, инфракрасные, световое (видимое) излучение и радиоволны.

Рентгеновское излучение - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Ангстрем. 10 Ангстрем = 1 нм. (0,нм)

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) - электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (10 - 380 нм).

Инфракрасное излучение - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

Коротковолновая область: λ = 0,74-2,5 мкм;

Средневолновая область: λ = 2,5-50 мкм;

Длинноволновая область: λ = 50-2000 мкм;

Видимое излучение - электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 терагерц), в зелёной части спектра. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380-400 нм (750-790 ТГц), а в качестве длинноволновой - 760-780 нм (385-395 ТГц). Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Радиоизлучение (радиоволны, радиочастоты) - электромагнитное излучение с длинами волн 5 10−5-1010 метров и частотами, соответственно, от 6 1012 Гц и до нескольких Гц. Радиоволны используются при передаче данных в радиосетях.

Тепловое излучение представляет собой процесс распространения в пространстве внутренней энергии излучающего тела путем электромагнитных волн. Возбудителями этих волн являются материальные частицы, входящие в состав вещества. Для распространения электромагнитных волн не требуется материальной среды, в вакууме они распространяются со скоростью света и характеризуются длиной волны λ или частотой колебаний ν. При температуре до 1500 °С основная часть энергии соответствует инфракрасному и частично световому излучению (λ=0,7÷50 мкм).

Следует отметить, что энергия излучения испускается не непрерывно, а в виде определенных порций - квантов. Носителями этих порций энергии являются элементарные частицы излучения - фотоны, обладающие энергией, количеством движений и электромагнитной массой. При попадании на другие тела энергия излучения частично поглощается ими, частично отражается и частично проходит сквозь тело. Процесс превращения энергии излучения во внутреннюю энергию поглощающего тела называется поглощением. Большинство твердых и жидких тел излучают энергию всех длин волн в интервале от 0 до ∞, то есть имеют сплошной спектр излучения. Газы испускают энергию только в определенных интервалах длин волн (селективный спектр излучения). Твердые тела излучают и поглощают энергию поверхностью, а газы - объемом.

Излучаемая в единицу времени энергия в узком интервале изменения длин волн (от λ до λ+dλ) называется потоком монохроматического излучения Qλ. Поток излучения, соответствующий всему спектру в пределах от 0 до ∞, называется интегральным, или полным, лучистым потоком Q(Вт). Интегральный лучистый поток, излучаемый с единицы поверхности тела по всем направлениям полусферического пространства, называется плотностью интегрального излучения (Вт/м 2).

Чтобы понять эту формулу рассмотрим изображение.

Я не случайно изобразил два варианта тела. Формула справедлива только для тела квадратной формы. Так как излучающая площадь должна быть плоской. При условии, что излучает только поверхность тела. Внутренние частицы не излучают.

Q - энергия (Вт), излучаемая лучами со всей площади.

Зная плотность излучения материала, можно рассчитать, сколько энергии уходит на излучение:

Необходимо понимать, что лучи исходящие от плоскости имеют разную интенсивность излучения по отношению к нормали плоскости.

Закон Ламберта. Излучаемая телом лучистая энергия распространяется в пространстве по различным направлениям с различной интенсивностью. Закон, устанавливающий зависимость интенсивности излучения от направления, называется законом Ламберта.

Закон Ламберта устанавливает, что количество лучистой энергии, излучаемое элементом поверхности в направлении другого элемента, пропорционально произведению количества энергии, излучаемой по нормали, на величину пространственного угла, составленного направлением излучения с нормалью

Интенсивность каждого лучика можно найти с помощью тригонометрической функции:

То есть - это своего рода коэффициент угла и он строго подчиняется тригонометрии угла. Коэффициент работает только для черного тела. Так как рядом находящиеся частички будут поглощать боковые лучи. Для серого тела, необходимо учитывать количество проходящих в сквозь частички лучей. Отражение лучей, тоже необходимо учитывать.

Следовательно, наибольшее количество лучистой энергии излучается в перпендикулярном направлении к поверхности излучения. Закон Ламберта полностью справедлив для абсолютно черного тела и для тел, обладающих диффузным излучением при температуре°С. Для полированных поверхностей закон Ламберта неприменим. Для них лучеиспускание при угле будет большим, чем в направлении, нормальном к поверхности.

Немного об определениях. Определения пригодятся, чтобы правильно выражаться.

Отметим, что большинство твердых и жидких тел имеет сплошной (непрерывный) спектр излучения. Это значит, что они обладают способностью излучать лучи всех длин волн.

Лучистым потоком (или потоком излучения) называют отношение лучистой энергии ко времени излучения, Вт:

где Q- энергия излучения, Дж; т - время, с.

Если лучистый поток, излучаемый произвольной поверхностью во всех направлениях (т.е. в пределах полусферы произвольного радиуса) осуществляется в узком интервале длин волн от λ до λ+Δλ, то его называют потоком монохроматического излучения

Суммарное излучение с поверхности тела по всем длинам волн спектра называется интегральным или полным потоком излучения Ф

Интегральный поток, испускаемый с единицы поверхности, носит название поверхностной плотности потока интегрального излучения или излучательности, Вт/м 2 ,

Формулу можно применять и при монохроматическом излучении. Если на поверхность тела падает тепловое монохроматическое излучение, то в общем случае часть, равная В λ этого излучения, поглотится телом, т.е. превратится в другую форму энергии в результате взаимодействия с веществом, часть F λ будет отражена, и часть D λ пройдет сквозь тело. Если принять, что падающее на тело излучение равно единице, то

где В λ , F λ , D λ - коэффициенты соответственно поглощения, отражения

и пропускания тела.

Когда в пределах спектра величины В, F, D остаются постоянными, т.е. не зависят от длины волны, то надобность в индексах отпадает. В этом случае

Если В= 1 (F = D = 0), то тело, полностью поглощающее все падающее на него излучение независимо от длины волны, направления падения и состояния поляризации излучения, называется черным телом или полным излучателем.

Если F=1 (В=D=0), то падающее на тело излучение полностью отражается. В том случае, когда поверхность тела шероховатая, то лучи отражаются рассеянно (диффузное отражение), и тело называют белым, а когда поверхность тела гладкая и отражение следует законам геометрической оптики, то тело (поверхность) называют зеркальным. В том случае, когда D = 1 (В=F=0), тело проницаемо для тепловых лучей (диатермично).

Твердые тела и жидкости для тепловых лучей практически непрозрачны (D = 0), т.е. атермичны. Для таких тел

Абсолютно черных, так же как и прозрачных или белых тел, в природе нет. Такие тела должны рассматриваться как научные абстракции. Но все же некоторые реальные тела могут достаточно близко подходить по своим свойствам к таким идеализированным телам.

Надо отметить, что некоторые тела обладают по отношению к лучам определенной длины волны одними свойствами, а к лучам другой длины - иными. Например, тело может быть прозрачным для инфракрасных лучей и непрозрачным для видимых (световых) лучей. Поверхность тела может быть гладкой по отношению к лучам одной длины волны и шероховатой - для лучей другой длины волны.

Газы, в особенности находящиеся под небольшим давлением, в противоположность твердым и жидким телам излучают линейчатый спектр. Таким образом, газы поглощают и излучают лучи лишь определенной длины волны, других же лучей они не могут ни излучать, ни поглощать. В этом случае говорят о селективном (выборочном) поглощении и излучении.

В теории теплового излучения важную роль играет величина, называемая спектральной плотностью потока излучения, или спектральной излучательностью, представляющей собой отношение плотности лучистого потока, испускаемого в бесконечно малом интервале длин волн от λ до λ+Δλ, к размеру этого интервала длин волн Δλ, Вт/м 2 ,

где E - поверхностная плотность лучистого потока, Вт/м 2 .

Почему нет такого справочника по материалам? Потому что теплопотери тепловым излучением очень маленькие, и я думаю вряд ли превышают 10% в наших бытовых условиях. Поэтому в расчет теплопотерь их не закладывают. Вот когда мы будем часто летать в космос, тогда и появятся все расчеты. Вернее в нашей космонавтике накопились данные по материалам, но в свободной доступности их пока нет.

Закон поглощения лучистой энергии

Если на какое-либо тело толщиной l, падает лучистый поток (смотри рисунок), то в общем случае при прохождении сквозь тело он уменьшается. Принимают, что относительное изменение лучистого потока на пути Δl прямо пропорционально пути потока:

Коэффициент пропорциональности b называется показателем погло-щения, зависящим в общем случае от физических свойств тела и длины волны.

Интегрируя в пределах от l до 0 и принимая b постоянным, получаем

Установим связь между спектральным коэффициентом поглощения тела В λ и спектральным показателем поглощения вещества b λ .

Из определения спектрального коэффициента поглощения В λ имеем

После подстановки в это уравнение значения получим соотношение между спектральным коэффициентом поглощения В λ и спектральным показателем поглощения B λ .

Коэффициент поглощения В λ равен нулю при l 1 = 0 и b λ = 0. При большом значении bλ достаточно весьма малого значения l, но все же не равного нулю, чтобы значение В λ было как угодно близко к единице. В этом случае можно говорить, что поглощение происходит в тонком поверхностном слое вещества. Только в этом понимании возможно говорить о поверхностном поглощении. Для большинства твердых тел благодаря большому значению показателя поглощения b λ имеет место в ука-занном смысле «поверхностное поглощение», в связи с чем на коэффициент поглощения большое влияние оказывает состояние его поверхности.

Тела, хотя и с малым значением показателя поглощения, как, например, газы, могут при их достаточной толщине обладать большим коэффициентом поглощения, т.е. делаются непрозрачными для лучей данной длины волны.

Если b λ =0 для интервала Δλ, а для остальных длин волн b λ не равно нулю, то тело будет поглощать падающее излучение только определен-ных длин волн. В этом случае, как было указано выше, говорят о селективном (выборочном) коэффициенте поглощения.

Подчеркнем принципиальную разницу между показателем поглоще-ния вещества b λ и коэффициентом поглощения В λ тела. Первый характе-ризует физические свойства вещества по отношению к лучам определенной длины волны. Значение В λ зависит не только от физических свойств вещества, из которого состоит тело, но и от формы, размеров и состояния поверхности тела.

Законы излучения лучистой энергии

Макс Планк теоретически на основе электромагнитной теории установил закон (носящий название закона Планка), выражающий зависимость спектральной излучательности черного тела Е 0λ от длины волны λ и температуры Т.

где E 0λ (λ,T) - излучательность черного тела, Вт/м 2 ; T - термодинамическая температура, K; C 1 и C 2 - постоянные; С 1 =2πhc 2 =(3,74150±0,0003) 10-16 Вт м 2 ; С 2 =hc/k=(1,438790±0,00019) 10 -2 ; м K (здесь h=(6,626176±0,000036) Дж с - постоянная Планка; с=(±1,2) м/с - скорость распространения электромагнитных волн в свободном пространстве: k - постоянная Больцмана.)

Из закона Планка следует, что спектральная излучательность может равняться нулю при термодинамической температуре, равной нулю (Т=0), либо при длине волны λ = 0 и λ→∞ (при Т≠0).

Следовательно, черное тело излучает при любой температуре больше 0 К. (Т > 0) лучи всех длин волн, т.е. имеет сплошной (непрерывный) спектр излучения.

Из выше указанной формулы можно получить расчетное выражение для излучательности черного тела:

Интегрируя в пределах изменения λ от 0 до ∞ получаем

В результате разложения подынтегрального выражения в ряд и его интегрирования получают расчетное выражение для излучательности черного тела, называемое законом Стефана-Больцмана:

где Е 0 - излучательность черного тела, Вт/м 2 ;

σ - постоянная Стефана Больцмана, Вт/(м 2 К 4);

σ = (5,67032 ± 0,00071) 10 -8 ;

Т- термодинамическая температура, К.

Формулу часто записывают в более удобной для расчета форме:

где E 0 - коэффициент излучения черного тела; С 0 = 5,67 Вт/(м 2 К 4).

Закон Стефана-Больцмана формулируют так: излучательность чер-ного тела прямо пропорциональна его термодинамической температуре в четвертой степени.

Спектральное распределение излучения черного тела при различных температурах

λ - длина волны от 0 до 10 мкм (нм)

E 0λ - следует понимать так: Как если бы в объеме (м 3) черного тела находиться определенное количество энергии (Вт). Это не означает, что оно излучает такую энергию только наружными частичками. Просто если собрать все частички черного тела в объеме и измерить каждой частички излучаетельность во всех направлениях и сложить их все, то мы получим полную энергию на объеме, которая и указана на графике.

Как видно из расположения изотерм, каждая из них имеет максимум, причем, чем больше термодинамическая температура, тем больше значение E0λ, отвечающее максимуму, а сама точка максимума перемещается в область более коротких волн. Перемещение максимальной спектральной излучательности E0λmax в область более коротких волн известно под названием

закона смещения Вина, по которому

T λ max = 2,88 10 -3 м К = const и λ max = 2,88 10 -3 /Т,

где λ max - длина волны, соответствующая максимальному значению спектральной излучаетльности E 0λmax .

Так, например, при Т = 6000 К (примерная температура поверхности Солнца) максимум Е 0λ располагается в области видимого излучения, на которую падает около 50% излучательности Солнца.

Элементарная площадка под изотермой, заштрихованная на графике равна Е 0λ Δλ. Ясно, что сумма этих площадок, т.е. интеграл представляет собой излучательность черного тела E 0 . Следовательно, площадь между изотермой и осью абсцисс изображает в условном масштабе диаграммы излучательность черного тела. При небольших значениях термодинамической температуры изотермы проходят в непосредственной близости к оси абсцисс, и указанная площадь становится столь малой, что практически ее можно считать равной нулю.

Большую роль в технике играют понятия о так называемых серых телах и сером излучении. Серым называется неселективный тепловой излучатель, способный излучать сплошной спектр, со спектральной излучательностыо E λ для волн всех длин и при всех температурах, составляющей неизменную долю от спектральной излучательности черного тела Е 0λ т.е.

Постоянная ε называется коэффициентом черноты теплового излучателя. Для серых тел коэффициент черноты ε E - Излучательность, Вт;

B - Коэффициент поглощения;

F - Коэффициент отражения;

D - Коэффициент пропускания;

T - Температура К.

Можно положить, что все лучи, посылаемые одним телом, полностью попадают на другое. Примем, что коэффициенты пропускания этих тел D 1 = D 2 = 0 и между поверхностями двух плоскостей находится теплопрозрачная (диатермическая) среда. Обозначим через E 1 , B 1 , F 1 , T 1 , и E 2 , B 2 , F 2 , T 2 соответственно излучательности, коэффициенты поглощения, отражения и температуры пов ерхностей первого и второго тел.

Поток лучистой энергии от поверхности 1 к поверхности 2 равен произведению излучательности поверхности 1 на ее площадь А, т.е. Е 1 А, из которого часть Е 1 В 2 А поглощается поверхностью 2, а часть Е 1 F 2 А отражается обратно на поверхность 1. Из этого отраженного потока Е 1 F 2 А поверхность 1 поглощает E 1 F 2 B 1 A и отражает E 1 F 1 F 2 A. ИЗ отраженного потока энергии E 1 F 1 F 2 A поверхность 2 вновь поглотит E 1 F 1 F 2 B 2 A и отразит E 1 F 1 F 2 A и т.д.

Аналогично происходит передача лучистой энергии потоком Е 2 от поверхности 2 к поверхности 1. В итоге поток лучистой энергии, поглощенный поверхностью 2 (или отданный поверхностью 1),

Поток лучистой энергии, поглощенной поверхностью 1 (или отданной поверхностью 2),

В окончательном итоге поток лучистой энергии, переданной поверхностью 1 к поверхности 2, будет равен разности лучистых потоков Ф 1→2 и Ф 2→1 т.е.

Полученное выражение справедливо при всех значениях температур Т 1 и Т 2 и, в частности, при Т 1 = Т 2 . В последнем случае рассматриваемая система находится в динамическом тепловом равновесии, и на основании второго начала термодинамики необходимо положить Ф 1→2 = Ф 2→1 откуда следует

Полученное равенство носит название закона Кирхгофа: отношение излучательности тела к его коэффициенту поглощения для всех серых тел, находящихся при одной и той же температуре, одинаково и равно излучательности черного тела при той же температуре.

Если какое-либо тело имеет малый коэффициент поглощения, как например, хорошо полированный металл, то это тело имеет и малую излучательность. На этом основании для уменьшения потерь теплоты излучением во внешнюю среду теплоотдающие поверхности покрывают листами полированного металла для тепловой изоляции.

При выводе закона Кирхгофа рассматривалось серое излучение. Вывод останется справедливым и в том случае, если тепловое излучение обоих тел рассматривается только в некоторой части спектра, но однако имеет одинаковый характер, т.е. оба тела испускают лучи, длины волн которых лежат в одной и той же произвольной спектральной области. В предельном случае приходим к случаю монохроматического излучения. Тогда

т.е. для монохроматического излучения закон Кирхгофа должен быть сформулирован так: отношение спектральной излучательности какого-либо тела при определенной длине волны к его коэффициенту поглощения при той же длине волны одинаково для всех тел, находящихся при одинаковых температурах, и равно спектральной излучательности черного тела при той же длине волны и той же температуре.

Заключаем, что для серого тела В = ε, т.е. понятия «коэффициент поглощения» В и «коэффициент черноты» ε для серого тела совпадают. По определению коэффициент черноты не зависит ни от температуры, ни от длины волны, а следовательно, и коэффи-циент поглощения серого тела также не зависит ни от длины волны, ни от температуры.

Излучение газов существенно отличается от излучения твердых тел. Поглощение и излучение газов - селективное (выборочное). Газы поглощают и излучают лучистую энергию только в определенных, довольно узких интервалах Δλ длин волн - так называемых полосах. В остальной части спектра газы не излучают и не поглощают лучистой энергии.

Двухатомные газы обладают ничтожно малой способностью поглощать лучистую энергию, а следовательно, и малой способностью ее излучать. Поэтому эти газы обычно считают диатермичными. В отличие от двухатомных газов многоатомные, в том числе и трехатомные газы, обладают значительной способностью излучать и поглощать лучистую энергию. Из трехатомных газов в области теплотехнических расчетов наибольший практический интерес представляют углекислый газ (CO 2) и водяной пар (H 2 O), имеющие по три полосы излучения.

В отличие от твердых тел показатель поглощения для газов (конечно, в области полос поглощения) мал. Поэтому для газообразных тел уже нельзя говорить о «поверхностном» поглощении, так как поглощение лучистой энергии происходит в конечном объеме газа. В этом смысле поглощение и излучение газов называются объемными. Кроме того, показатель поглощения b λ для газов зависит от температуры.

По закону поглощения спектральный коэффициент поглощения тела может быть определен по:

Для газообразных тел эта зависимость несколько усложняется тем, что на коэффициент поглощения газа влияет его давление. Последнее объясняется тем, что поглощение (излучение) протекает тем интенсивнее, чем большее число молекул встретит луч на своем пути, а объемное число молекул (отношение числа молекул к объему) прямо пропорционально давлению (при t = const).

В технических расчетах газового излучения, обычно поглощающие газы (CO 2 и H 2 O) входят как компоненты в состав смеси газов. Если давление смеси p, а парциальное давление поглощающего (или излучающего) газа р i , то в необходимо вместо l подставить величину р i 1. Величина р i 1, представляющая собой произведение давления газа на его толщину, носит название эффективной толщины слоя. Таким образом, для газов спектральный коэффициент поглощения

Спектральный коэффициент поглощения газа (в пространстве) зависит от физических свойств газа, формы пространства, его размеров и температуры газа. Тогда в соответствии с законом Кирхгофа спектральная излучательность

Излучательность в пределах одной полосы спектра

По этой формуле определяют излучательность газа в свободное пространство (пустоту). (Свободное пространство можно рассматривать как черное пространство при 0 К.) Но газовое пространство всегда ограничено поверхностью твердого тела, в общем случае имеющей температуру Т ст ≠ Т г и коэффициент черноты ε ст